

GIHSN 12TH GLOBAL ANNUAL MEETING 24-26 November 2024

Foundation for Influenza Epidemiology

Coordination

WELCOME TO THE GIHSN GLOBAL ANNUAL MEETING! DOMAINE DE CHÂTEAUNEUF, 24-26 NOVEMBER 2024

GIHSN 12TH ANNUAL MEETING, 25-26 NOVEMBER 2024

GISAID ROLE IN WGS ACTIVITIES

Sebastian MAURER-STROH, GISAID

Foundation for Influenza Epidemiology

Coordination

GISAID Data Science Initiative

GISAID – Data Governance begins with respecting submitters' rights

Ownership

Data submitters retain ownership of their data and intellectual property

Quality

GISAID curation team works with submitters to ensure highest standard of quality for genomic data and metadata

Stewardship

Trust built over a decade of partnerships. GISAID provides consistent reliability and accountability for data management and service

Security

Protecting digital content and infrastructure Reliability of systems

Privacy

GISAID commits to data privacy for users and submitters. GISAID strives to ensure case patient anonymity through robust checks, policies and systems.

GISAID – Empowering Rapid Response to Disease X

GISAID's enduring commitment to education and capacity building

GISAID Academy UID Campus, Kura Kura | Bali

- Consolidating GISAID's global training efforts
- Collaboration with Indonesia Health Ministry
- Supported by private partnerships
- Comprehensive year-round courses
- End-to-end vocational training (wet & dry lab)
- From basic PCR techniques to NGS preparing for advanced bioinformatics training
- Graduates receive academic credits

GISAID

Accelerated NGS Bioinformatics Training State-of-the-art learning facilities

ISAID

ACADEMY

CERTIFICATE OF COMPLETION PRESENTED TO

Kemenkes Corporate Universi

International Conferences and Symposia

e.g. Arbovirus Summit Cohosted by MoH Brazil & Indonesia April 2024

EpiFlu™	EpiCoV™	EpiRSV™	EpiPox™	EpiArbo™	EpiX	м
Registered Users EpiFi		GISAID	© 2008 - 2022 Terms of Use Priva	ns of Use Privacy Notice Contact	s of Use Privacy Notice Contact	Responding to calls to support surveillance of other priority pathogens
Released files	piCoV™ Search Downloads arch ▼	Registered Users EpiFlu™ EpiCoV	GISAID		C	2008 - 2022 Terms of Use Privacy Notice Contact © 2008 - 2022 Terms of Use Privacy Notice Contact
A/Netherlands/11612/2CEPI A/Netherlands/11611/2LOC A/Netherlands/11611/2LOC A/Netherlands/11610/2COI A/Netherlands/11610/2COI	_ISL ID Virus na ation to to to Virus na	Search Accession ID	Registered Users EpiFlu™	GISAID	CALCULA	© 2008 - 2022 Terms of Use Privacy Notice Contact
A/Netherlands/11609/2C Cla A/Netherlands/11609/2C Cla A/Netherlands/11604/2C	ure ∐an ▼ Linedge	Collection to Substitutions	Accession ID	Registered Users EpiFlu™ Epi Search		You are logged in as Sebastian Maurer-Stroh - logout
Arivetherlands/11502/20 Arivetherlands/11599/20 Arivetherlands/11599/20 Arivetherlands/11598/20 Arivetherlands/11598/20	Virus name hCoV-19/USA/AZ-ASU75332/2021 hCoV-19/USA/AZ-ASU75300/2021	Virus name hRSV/A/Philippines/99087/2020 hRSV/A/Philippines/99085/2020	Collection to Virus name hMpxV/Spain/MD-HGUGM-65	Accession ID	EpiX™ Search Single Upload	
A/Netherlands/11596/20 A/Netherlands/11596/20 A/Netherlands/11551/20 A/Netherlands/11550/20	hCoV-19/USA/AZ-ASU75352/2021 hCoV-19/USA/AZ-ASU75338/2021 hCoV-19/USA/AZ-ASU75322/2021	hRSV/A/Philippines/99084/2020 hRSV/A/Philippines/99082/2020 hRSV/B/Philippines/99081/2019	hMpxV/Spain/MD-HGUGM-65 hMpxV/USA/VA-DHCPPCDC- hMpxV/Argentina/INEI-001/20	Collection to Virus name hDenV2/Brazil/SP-IAL-44295/2021	Enter and upload gene data. Data will be revi Pathogen detail	etic sequence and metadata, available clinical and epidemiological data, geographical as well as species-specific ewed by a curator prior to release. An email confirmation will be issued upon release.
A/Netherlands/11549/2C Netherlands/11549/2C Nutherlands/11627/2C A/Netherlands/11636/2C	hCoV-19/USA/AZ-ASU75346/2021 hCoV-19/USA/AZ-ASU75326/2021 hCoV-19/USA/AZ-ASU75372/2021	nRSV/A/Philippines/99030/2019 hRSV/A/Philippines/99079/2019 hRSV/A/Philippines/99078/2019 hRSV/A/Philippines/99078/2019	hMpxV/USA/CA-DHCPPCDC- hMpxV/USA/FL-DHCPPCDC- hMpxV/USA/USA/UT-DHCPPCDC-	hDenV2/Brazil/SP-IAL-NS11423/20 hDenV2/Brazil/SP-IAL-NS859R/20 hDenV2/Brazil/SP-IAL-NS8859R/20 hDenV2/Brazil/SP-IAL-NS8859R/20	2 Submission name*	X/Country/Identifier/2022
A/Netherlands/11635/2C A/Netherlands/11634/2C A/Netherlands/11634/2C A/Netherlands/11633/2C	hCoV-19/USA/AZ-ASU75336/2021 hCoV-19/USA/AZ-ASU75306/2021 hCoV-19/USA/AZ-ASU75310/2021	hRSV/A/Philippines/9907//2019 hRSV/A/Philippines/99076/2019 hRSV/A/Philippines/99075/2019 hRSV/A/Philippines/99075/2019	hMpxV/USA/UT-DHCPPCDC- hMpxV/USA/FL-DHCPPCDC- hMpxV/USA/TL-DHCPPCDC- hMpxV/USA/TX-DHCPPCDC-	hDenV2/Brazil/SP-IAL-NS9745/2022 hDenV2/Brazil/SP-IAL-NS9244R/20 hDenV2/Brazil/SP-IAL-NS8588R/20	Pathogen Kingdom* Pathogen Family* Passage details/history	
A/Netherlands/11632/20 A/Netherlands/11632/20 A/Netherlands/11631/20 A/Netherlands/11630/20 A/Netherlands/11630/20 A/Netherlands/11630/20	hCoV-19/USA/AZ-ASU75366/2021 hCoV-19/USA/AZ-ASU75292/2021 hCoV-19/USA/AZ-ASU75290/2021	hRSV/A/Philippines/99074/2019 hRSV/A/Philippines/99073/2019 hRSV/A/Philippines/99072/2019 hRSV/A/Philippines/99072/2019	hMpxV/USA/MD-DHCPPCDC hMpxV/Netherlands/un-EMC-N hMpxV/England/CIDR-GSTT-F	hDenV2/Brazil/SP-JAL-NS11331/20 hDenV2/Brazil/SP-JAL-NS7253R/20 hDenV2/Brazil/SP-JAL-NS11543/20	2 Sample information Collection date*	Example: Original, Vero
Arketherlands/11625/2C A/Netherlands/11625/2C A/Netherlands/11624/2C Total: 368.082 isolates	hCoV-19/USA/AZ-ASU75371/2021 hCoV-19/USA/AZ-ASU75355/2021 hCoV-19/USA/AZ-ASU75367/2021	hRSV/A/Philippines/99070/2019 hRSV/A/Philippines/99070/2019 hRSV/A/Philippines/99069/2019 hRSV/A/Philippines/99068/2019	hMpxV/Portugal/INSA-PT0023 hMpxV/Portugal/INSA-PT0027 hMpxV/Portugal/INSA-PT0026	hDenV2/Brazil/SP-IAL-NS7453R/20 hDenV2/Brazil/SP-IAL-NS9471R/20 hDenV2/Brazil/SP-IAL-NS9428RD2	D: Location* C Additional location Information	Continent / Country or Territory / Region
	hCoV-19/USA/AZ-ASU75335/2021 hCoV-19/USA/AZ-ASU75319/2021 hCoV-19/USA/AZ-ASU75296/2021	hRSV/B/Philippines/99067/2019 hRSV/A/Philippines/99066/2019 hRSV/A/Philippines/99066/2019	hMpxV/Portugal/INSA-PT0025 hMpxV/Portugal/INSA-PT0015 hMpxV/Portugal/INSA-PT0017	hDenV2/Brazil/SP-IAL-NS8187R/20 hDenV2/Brazil/SP-IAL-NS815R/20 hDenV2/Brazil/SP-IAL-NS9815R/20): Host* [] : Additional host [] information []	Example: Human, Environment, Canine, Manis javanica, Rhinolophus affinis, unknown
Go back Y Heip	I: 11,224,770 viruses mportant note: In the <u>GISAID EpiFlu^M Databas</u> e Database contains data relating to non-influe	hRSV/A/Philippines/99064/2019 hRSV/B/Philippines/99063/2019	hMpxV/Portugal/INSA-PT0016 hMpxV/Portugal/INSA-PT0020 hMpxV/Portugal/INSA-PT0018	hDenV2/Brazil/SP-IAL-NS6587R/20 hDenV2/Brazil/SP-IAL-NS10939/20 hDenV2/Brazil/SP-IAL-NS806R/20	²² Sampling strategy ²² Gender ²³ Patient age	Male, Female, or unknown
	be bound by the terms of the <u>GISAID F</u>	Total: 24,401 viruses Important note: In the <u>GISAID EpiFlu[™] Database</u> the Database contains data relating to non-influen. be bound by the terms of the <u>GISAID Ep</u>	hMpxV/Portugal/INSA-PT0012	hDenV2/Brazil/SP-IAL-NS11354/20 hDenV2/Brazil/SP-IAL-NS6312R/20 hDenV2/Brazil/SP-IAL-NS11487/20	Patient status Additional clinical	xample: 65, 7 months, or unknown Hospitalized, Released, Live, Dec 💌
			Total: 205 viruses Important note: In the <u>GISAID EpiFilu</u> ²⁰⁰ the Database contains data relating to n be bound by the terms of the <u>s</u>	Database Access Agreement, you have accepted cer on-influenza viruses, the viewing and use of these da GISAID EpiFlu [™] Database Access Agreement in respo	Specimen source	Example: Sputum, Alveolar lavage fluid, Oropharyngeal swab, Nasopharyngeal swab, Blood, Tracheal swab, Urine, Stool, Cloakal wab, Organ, Feces, Other
					Last vaccinated	Example: Date, Place, Family cluster

Seamless evolution of GISAID Database Architecture

Empowering Actionable Data-Answering YOUR Questions

Ecosystem of integrated tools supporting scale-free view of virus evolution

Seamless integration of tools inside the GISAID platform (log-in once) provides you comprehensive views from multiple angles and all info in one place

Tracking the viral evolution and identifying fast spreading variants

Constellation

GISAID

E_T11A, N_P13L, Spike_D405N, Spike_D614G, Spike_D796Y, Spike_E484A, Spike_G257S, Spike_G339H, Spike_G446S, Spike_K147E, Spike_K417N, Spike_N440K, Spike_N460K, Spike_N501Y, Spike_P681H, Spike_Q498R, Spike_R408S, Spike_S371F, Spike_S373P, Spike_S375F, Spike_S477N, Spike_T376A, Spike_T478K, Spike_W152R, Spike_Y505H

	All countries			Filter by Country	~		Input com	ima separated	mutations here	e for search, the	ien press Enter	Filter by Mutation	
Constellation (Clade/Lineage) (New Lineage) BA.2.75	Count(past 100 days)†↓	Current Ranking ↑↓	Dissimilarity Score ↑↓	Cumulative#loc	North America	South America	%inEachCon Europe	tinent Africa	Asia	Oceania		geoMap	
GRA/BA.2.75+Spike_F 486S+Spike_R346T Q_Search EpiCoV X_Spike 3D	652	3	4	120 100 80	2.093 2 1.5								
	Se Epi(earch C CoV da	GISAID atabase		0.5						Tool	to see new	
View mu Spike 3D	tations Structu	in ıre		20220613 + 20220627 + 20220125 - 20220808 - 202208025 - 20220905 -	202206- 202207- 202208-	202205 - 202205 - 202208 - 202209 -	202206- 202207 - 202209 -	202206 - 202207 - 202208 - 202209 -	202206- 202207 - 202208 - 202209 -	202206- 202207 - 202208 - 202209 -	varia have	ants before they a lineage name	20220727 20220919

New in EpiFlu

Collection date from	To Specimen source Broncheoalveolar lavage										
(YYYY-MM-DD)	Cloacal swab										
	Collection date complete Cow milk (individual)										
Submission date from	To										
(YYYY-MM-DD)	Lung										
Originating Laboratory	[Afghanistan, Kabul] National Public Health Laboratory										
	[Albania, Tirana] Institute of Public Health										
	[Algeria, Algiers] Institut Pasteur d'Algerie										
	[Algeria, Bilda] Bilda [American Samoa, Fadaala] I B.I Trooical Medicine Centre										
	[Andorra_a] a										
Submitting Laboratory	[Algeria_Algiers] Institut Pasteur d'Algérie										
,	[Argentina, Buenos Aires] Instituto Nacional de Enfermedades Infecciosas Dr. C.G. Malbrán										
	[Argentina, Buenos Aires] Instituto Nacional de Tecnología Agropecuaria (INTA)										
	[Argentina, Mar del Plata] Instituto Nacional de Epidemiología Juan Hector Jara										
	[Australia, Adelaide] SA. Pathology Laboratory										
	🗌 GISRS Submission 🗹 GIHSN Submission (beta)										
Required Segments	□ PB2 □ PB1 □ PA □ HA □ NP □ NA □ MP □ NS □ HE □ P3 Passage details/history □ V										
Drug Susceptibility	Matching Criteria Drug Degree of Drug Susceptibility										
(beta)	pos + subtype + aa 🔺 Oseltamivir 🔺 NI (normal inhibition)										
	pos + subtype Zanamivir NI RI (normal to reduced inhibition)										
	pos Peramivir RI (reduced inhibition)										
	Measured Phenotype Laninamivir RI HRI (reduced to highly reduced inhibition)										
	Baloxavii * [HRI (liigiliy leduced inhibition)										
Sampling strategy	Baseline (random) surveillance Sequencing technology MiSeq, MiniION, DNBSEQ-G99, SeqStudio V										
	Sentinel surveillance (ILI) Assembly method CLC genomics workbench Illumina Dragen Epi2Me										
	Sentinel surveillance (AKI)										
	Coverage /0x, 1,000x, 10,000x (average)										

GISAID FluCluster-AI – map clinical data to emerging virus variants

- User uploads sequencing fasta files or GISAID accessions and metadata files(in tsv/csv/json formats) in the landing page.
- Clinical data never leaves the user's computer, analysis happens in local browser

GISAID

III Enrichment Analysis

⊥ Export file 🔀 Show more

FluCluster 6B.1A.5a.2a is associated with higher values of ICU admission (Odds Ratio: 0.56), indicating that this FluCluster has a higher ... more

Constellation	Count 🗘	Age 🌲	Fever ≑	Malaise fatigue \$ lethargy	Headache 🌻	Myalgia muscle ache ¢ body ache	Cough 🌲	Sore	Shortness of breath difficult breathing	Wheezing 🌲	Nasal congestion runny nose	Vaccination for the current season	Vaccination in the preceding season	Vaccination for the current or preceding seasons	ICU admission	High dependence unit	Mechanical , ventilation	Death while hospitalized	Aggregate severe symptoms
6B.1A.5a.2a6+HA_N27	88	0.77				1.08						0.99		0.95	0.86				1.02
6B.1A.5a.2a.1	11	1.94					0.71	0.99	1	0.73		0.92	0.87	0.86	0.87	1.06	0.97	0.97	0.95
6B.1A.5a.2a+HA_A65P	9	0.97										1.13		0.97	0.87				
6B.1A.5a.2a+HA_A65P	7	0.97						1.23		1.16		0.92	1.28	1.26	1.26	1.23		0.97	1.41
6B.1A.5a.2a.1+HA_I23	5	1.24										0.92		0.79	0.87				
6B.1A.5a.2a+HA_A65P	4	0.51		1.08	0.74		0.99			0.73	1.19	0.92		0.79	0.87	0.77		0.98	
6B.1A.5a.2a	4	1.33			1.31							0.92		0.99	1.55	0.77			1.22
6B.1A.5a.2a.1+HA_D29	2	1.38				0.8	0.56		1.1			0.92	0.8	0.79	1.32	0.78	1.46	0.98	1.05
6B.1A.5a.2a.1+HA_K71	2	1.85			1.12			1.17				0.92		0.79	0.88		1.46		1.4
6B.1A.5a.2a+HA_D502	2	0.46			1.12					1.48		0.92	1.62	1.6	0.88				1.4
																	< 1	2 3 4	5 >

Step 2: Odds ratio analysis of clinical variables for enrichment or depletion association with the emerging variants

III Enrichment Analysis

Constellation	Count ≑	Age 🌲	Fever ≑	Malaise fatigue \$ lethargy	Headache 4	Myalgia muscle ache \$ body ache	Cough ≑	Sore throat	Shortness of breath difficult breathing	Wheezing 👙	Nasal congestion runny nose	Vaccination for the current season	Vaccination in the preceding season	Vaccination for the current or preceding seasons	ICU 4	High dependence unit	Mechanical ventilation	Death while hospitalized	Aggregate severe symptoms
H1N1_6B.1A.5a.2a6+HA_N277D+HA_S4	88		1.08											1.05					
H3N2_3C.2a1b.2a.2a.3a.1	39	1.1	1		0.82				1			0.98		0.9	0.91	1.28			
H3N2_3C.2a1b.2a.2a.1b+HA_T26M	31	0.6	1.14	1.24								0.93		0.85					
H3N2_3C.2a1b.2a.2b	28	0.86	0.87									0.93		0.89	1.01	0.73		0.98	
H3N2_3C.2a1b.2a.2a.1b3+HA_D120G+F	23	1.23	0.99									1.15	1.02	1.05					
H3N2_3C.2a1b.2a.2b+HA_R49Q	22	2.3	1.01						1.09		0.85	1.02		1.02	0.91				
H1N1_6B.1A.5a.2a.1	11	2.21	0.93					1.01	1.02			0.94		0.94	0.91				
H3N2_3C.2a1b.2a.2b+HA_I258M	11		0.93			0.83	1.13	0.79	1.09	0.99	0.86	0.94		0.86	0.91	1.5	1.24	0.98	1.4
Bvic_V1A.3a.2	9	1.55	0.94	1.02	0.96	1.12		1.23	0.83	0.83	0.97	0.94		0.86	1.22	0.74	1.08	0.98	
H1N1_6B.1A.5a.2a+HA_A65P+HA_E252	9	1.14	1.07									1.15		1.05				0.98	
														<	1 2	3 4	5 ••• 1	0 > 1	10 / page ${\scriptstyle \lor}$

GISAID FluCluster-AI – new functionality for HI titres and antigenic change

>A/Norway/24873/2021Egg

 $\label{eq:linear} Attagage accases the transmission of transmission of the transmission of the transmission of the transmission of the transmission of transmiss$

ATGAAGACTATCATTGCTTTGAGCAACATTCTATGTCTTGTTTTCGCTCAAAAAATACCTGGAAATGAC CTTGATGGAGGGAACTGCACACTAATAGATGCTCTATTGGGGACCCTCAGTGTGACGGCTTTCAAAAT AACGGAGCAACTAGCATAAGGGGATCTAGTAGTAGTATTATAGTAGATTAAATTGGTGAC AAAAGAAGCCAACAACGTGTAATCCCAAATATCGGATCTAGACCCAGAATAAGGGATATCCCTAGCAG TGCATCACCTCCAAATGGAAGGACTAGCGCAGATCTCAAAAGCACTCAACAGGATCACATACGGG CATCAAAATTCTGAGGAAGAGGACAAGCGCAGATCTCAAAAGCACTCAACAGGATCACACAAACG GTTGCCTGGAGAACAATCGATTGACCAAAGATCGACCAAAAGGAACAACGGATCACCATAACG GTTGCCCTGAGAACAACAACGATTGACCAAAGATCGACCAGAACAACTGTTGGATGAAAAAG AAGGGAGTGACCAACAACGATGACCAACGATCTCAGAACAACTGTTGCATGTTTG

Viruses	A/Cambod	A/Cambod	A/Thuringe	A/Stockho	A/Darwin/
A/Cambodia/925256/2020	1280	160	<40	320	320
A/Cambodia/e0826360/2020	80	640	40	160	320
A/Thuringen/10/2022	40	160	320	320	160
A/Stockholm/5/2021	80	80	80	640	640
A/Darwin/9/2021	80	640	320	640	1280
A/Norway/24873/2021SIAT	40	80	80	160	320
A/Norway/24873/2021Egg	80	320	160	640	1280
A/Poland/97/2022	40	160	80	640	640
A/Slovenia/8720/2022	40	80	80	320	640
A/Lille/50053/2022	40	160	40	320	320
A/Catalonia/NSVH161512067/20	40	40	80	160	320
A/Albania/290586/2023	160	160	640	640	320
A/Valladolid/24/2022	40	80	320	160	160

GISAID

FLUCLUSTER-AI

FluCluster-Al allows to link virus genomic sequence data with clinical or phenotypic data, for example to look at trends and correlations of clinical or phenotypic changes in GISAID emerging variants or individual mutations.

Step 1: map input sequences to emerging variants on GISAID

Step 2: correlate phenotype with emerging variants

Enrichment Analysis

土 Export file 兴 Show more

Constellation	Count 🌲	A/Camb 💲	A/Camb \$	A/Thurin \$	A/Stockh \$	A/Darwi 💲	A/Norwa \$	A/Norwa \$	A/Polan \$	A/Sloven \$	A/Lille/5 \$	A/Catalo 💲
3C.2a1b.2a.2b+HA_R49Q+HA_S278N	10									1.5	1.5	
3C.2a1b.2a.2a.1b3+HA_D120G+HA_D69G+HA_H172	10											
3C.2a1b.2a.2a.1+HA_T1835	5				1.33		1.5	1.33				
3C.2a1b.2a.2a.1+HA_S159T+HA_T151A+HA_T183S	3	1		2.5			1.5	1.33			0.5	
3C.2a1b.2a.2b+HA_S278N	З					1.5		1.33	1.33	1.5	1.5	
3C.2a1b.2a.2a.3	2	0.9		0.83					0.83		1.5	1.25
3C.2a1b.2a.2a.3a.1	2	0.9									1.5	
3C.2a1b.2a.1a	2			2.25			1.25	1.5	1.5	2.5		2.5
3C.2a1b.2a.2a.2+HA_P20S+HA_S161N	1	1									0.5	
3C.2a1b.2a.2a.1b+HA_A85V+HA_S161N	1	1.2	1.33	2	1	1	1.5	1	0.67		1	

< 1 2 >

Note that this step preserves privacy of user phenotype data as all data and analysis remains on the user's computer

Correlation with phenotype is also shown as per residue contribution

I Residue Contribution For HI Titer -	All Mutations		لى	L Export file	X Show more		158R S172H
Subtype	Å.	Mutation 🛛	A/Darwin	n/9/2021	÷		E66K
H3N2		HA_D424N 🕱	0.3	36 (2)			S273N
H3N2		HA_R238K 🕱	0.3	36 (1) f	filtered based on the rul contribution value bigge	structure is e: residue er than or equal	I41M
H3N2		HA_G158R X	0.3	t 35 (24)	to 0.3 and total count bi	gger than 2.	
H3N2		HA_5172H 🛛	0.3	33 (60)		J.	
H3N2		HA_F95V 🕱	0.3	33 (60)		aa change	(FluSurver) annotations
H3N2		HA_Q73R 🕱	0.3	33 (2)		I41M	Viral oligomerization, binds NAG
H3N2		HA_K326R 🕱	0.3	33 (1)	The value shown in this column is	E66K	Binds Ab (1EO8), viral oligomerization, binds SO4
H3N2		HA_1545V 🕱	0.3	33 (1)	the residue contribution value	F95V	Binds Ab (1EO8), viral oligomerization, binds EDO
H3N2		HA_V545T 🔀	0.3	33 (1)	the mutation found among test viruses	G158R	Binds Ab (4HF5), viral oligomerization, binds NAG
H3N2		HA_N24D 🗷	0.3	33 (1)	in the HI assay in parentheses.	S172H	Binds Ab (4GMS), host cell receptor site,
			< 1 2 3 4 5 ••	••• 11 >	10 / page \vee	I258M*	Viral oligomerization, binds NAG
						S278M	Viral oligomerization
GISAID						*found in man of heterologou	y test viruses that are greater than eight-fold s titres in recent ECDC influenza virus

characterization summary report

If no phenotype is available, we also provide antigenic distance prediction

Known effect(s) of mutations at position equivalent to your mutation:

Protein: HA Influenza type: Human H3N2 (1968) Mutation (as in paper): L226P neutral AA: Q neg. eff. AA: P Effect: antigenic drift / escape mutant

enece anugenic unit/ e

Comment:

The antibody HC68 has been shown previously to select neutralizationresistant mutants with a substitution at residue 193 of HA1, which is in the short alpha-helix at the membrane distal edge of the receptor binding site, about 15 A from residues 226. This residue may, therefore, also be components of the antibody binding site (Table 2). This mutant virus was able to infect MDCK cells and eggs with efficiencies comparable to those of wild type. Escape mutant MAb HC68.

Literature reference

(Mutation L226P in the paper is at an equivalent position of the mutation in your query)

< 1 2 3 4 5 ··· 10 > 10/page >

News on zoonotic human infections

Influenza (H5*) GSD globally and by continent

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the statistics are based.

- Rise of a new dominant H5N1 avian influenza lineage 2.3.4.4b
- Spread to all continents
- Outbreak in dairy cows in US
- Increasing infections in multiple mammalian species
- 18 human cases detected

Avian Human Other Mammals

H5N1 Bird Flu circulating in the U.S. in Dairy Cows, Poultry and now found in pigs

The 2.3.4.4b clade of the highly pathogenic avian influenza (HPAI) virus causing outbreaks in wild and domestic birds around the world, continues to spread in dairy farms across the United States since March 2024, with **over 50 human cases reported thus** far. These HPAI viruses recently caused morbidity and mortality in multiple mammalian species, mostly carnivores, after consuming infected carcasses. Although cows had not been considered to be at risk of infection, the current outbreak in the U.S. demonstrates influenza remains unpredictable.

Over a thousand full virus genome sequences from this outbreak, collected from mammalian and avian specimens in at least 18 States, have thus far been made available in GISAID EpiFlu.

HA segment

Aldeiry_cow/Texes/MP102024 | 2024-04-04 (Cow mill Aldeiry coelColoredo/BI-MD-0502024 | 2024-05-30 Aldeiry_cow/Coloredo/BI-MC-023/2024 | 2024-05-28 Aldery covildeho/BI-ME-0202024 | 2024-08-24 Udairy_cow/Texas/24_009387-023/2024 | 2024-03-2 hexcon/USA04-011659-001/2024 | 2024 haccoon/New_Mexico/24_009498-0022024 | 2024-03-25 Ahed_fox/Michigan/24-013016-002/2024 | 2024-04-24 hicken/Michigen/24-011082-010/2024 | 2024-04-12 Althicken/Texas/24_007264-003/2024 | 2024-03-0 AMissouri/121/2024 | 2024-08-22 Aldeiry_cow/Texas/24_015837-002-R222024 | 2024-04-0 Aldeiry_cow/Texas/BI-ME-034/2024 | 2024-06-23 AMichigen/91/2024 | 2024-05-25 Michigen/90/2024 | 2024-05-14 Aldeiry_cow/Texes/24_00949 Afturkey/USA24-028305-0012024 | 2024 (Newly added)
 Afturkey/USA24-028205-0012024 | 2024 Aldeiry cowfideho/072424-52024 | 2024-07-24 /2% milk Aldeiry_cowlideho24_015198-0082024 | 2024-05-20 Aldeiry cowlideho/BI-ME-015202412024-08-24 Aldeiry_cowfideho/81-MF-006/2024 | 2024-07-Aldeiry cowfideho/BI-ME-023/2024 | 2024-08-24 Ideiry_cowlideho/072424-8/2024 | 2024-07-24 (Mozzar Aldairy_cow/Georgia/4454-4/2024 | 2024-04 (2% reduced fat milk) Udeiry cowlideho/072424-7/2024 | 2024-07-24 (Mozzarella chees Aldeiry_coeffantucity/082404-29/2024 | 2024-08-24 (Whole milk) Aldeiry cowfideho/072424-4/2024 | 2024-07-24 (Whole milk) Videiry_cow/Colonedo/061924-20/2024 | 2024-06-19 (Mozzarel Aldeiry_cow/USA24_027864-001/2024 | 2024 (Newly added) (Cow mill Ideiry_coelUSA/24_027650-001/2024 | 2024 (Newly added) (Cow mlik) Aldwiny_cow/USA/24_027098-002/2024 | 2024 (Newly added) (Cow mill Aldeiry_cow/UBA24_027651-0012024 | 2024 (Newly addw) (Cow milk) Aldeiry_cow/UBA24_025962-0012024 | 2024 (Newly addw) (Cow milk) Aldeiry_cow/UBA24_025962-0012024 | 2024 (Newly addw) (Cow milk) Albery_cow/USA24_025996-00020024 | 2024 (Newly added) (Cow milk) Aldeiry cow/USA24 027852-001/2024 | 2024 (Newly added) (Cow milk) Aldery_cow/USA24_027805-002/2024 | 2024 (Newly added) (Cow milk Aldeiry cow/USA/24_027805-003/2024 | 2024 (Newly added) (Cow milk) Aldeiry_cowfUSA24_027807-005/2024 | 2024 (Newly added) (Cow milk ACalifornia/146/2024 | 2024-10-02 (Newly added) ACalifornia/134/2024 | 2024-00-30 ACalifornia/135/2024 | 2024-10-01 Aldeiry_cowfideho/072434-12024 | 2024-07-24 (Low fet mill) Aldeiry cowfUSA/24_017652-005/2024 | 2024 Aldeiry_cow/USA/24_020731-004/2024 | 202-Aldeiry_cow/South_Dekote/062424-20/2024 | 2024-06-24 (Chedd Aldeiry_cow/Texes/MIPOS/2024 | 2024-04-04 (Cow milk) Aldeiry_cow/Texas/USL_042/2024 | 2024-04-04 Adainy_com/Terran/A240750088-18/2024 | 2024 Aldeiry_cow/Texas/24-029328-01/2024 | 2024-03-20 Aldeiry_cow/USA/24_017148-007/2024 | 2024 (Cow milk)
Aldeiry_cow/USA/24_019888-003/2024 | 2024 (Cow milk) Aldeiry_cowUBA/24_018030-004/2024 | 2024 (Cow milk) Aldeiry_cow/Oklahome/3261-10/2024 | 2024-04 (Fat free mill Aldwiry_cow/Texas/8855-2/2024 | 2024-04 (Mtamin D milk) Aldwiry_cow/Colorado/BI-MF-021/2024 | 2024-07-02 Aldwiry_cow/Colorado/BI-MF-013/2024 | 2024-07-02 Artideiry_cowfUBA/24_022961-001/2024 | 2024 ArtColoreadu/136/2024 | 2024-07-19 ArtColoreadu/136/2024 | 2024-07-15 AlColorado/137/2024 | 2024-07-19 Aldeiry.cow/Kenses/0528-12/2024 | 2024-04 (1% low fet milk) A/Colorado/139/2024 | 2024-07-22 A/Celerede/109/2024 | 2024-07-11 Aldery_cow/USA24_018637-001/2024 | 2024 Aturiay/Michigan/24-011230-002/2024 | 2024-04-15 Adainy cond/Terrar/18/2424-22/2024 | 2024-06-24 (fre means) A/deiry_cow/USA/24_014545-000/2024 | 2024 (Cow milk) Aldeiry.cowfidebo/072424-2/2024 | 2024-07-24 (Whole milk) Almountain_lion/Montana/24_005908-001/2024 | 2024-01-5 AlMountain Lion/Montene/01/2024 | 2024-02-28 Atrumpeter_swen/Kanses/W23-928/2023 | 2023-12-03 A/Canada, goose/Maryland23-034924-001/2023 | 2023-11-0 A/Texes/37/2024 | 2024-03-28 Alchicken/lows/23-034847-001/2023 | 2023-11-10 Aturkey/Minnesote/23-038928-001/2023 | 2023-11-20 AlgoetMinnesote24_007234-050/2024 | 2024-03-08 AlapetMinneeute/24-007234-006/2024 | 2024-03-06 pat/Minnescta/24_007234-0472024 | 2024-03-08 Algost/Minnesota/24_007234-035/2024 | 2024-03-08 Alpheasert/Coloredo/23-037672-002/2023 | 2023-11-26 Ahkunk/Weshington/24_005959-002/2024 | 2024-02-23 AbkunkWeehington/24.005959-001/2024 | 2024-02-23 seri723-034952-002/2023 | 2023-11-10 Aturkey/Celfornie/23-032823-001/2023 | 2023-10-24
Aturkey/Celfornie/23-032823-001/2023 | 2023-10-24
Aturkey/Celfornie/24_007939-001/2024 | 2024-03-1 AhmidUSA/24-005993-001/2024 2024 AhavkUSA24-004080-001-R2/2024 | 202 Ahabor_stel/Webington/23-025744-002/2023 | 2023-08-19 Ahabor_sealWashington/23-027089-002/2023 | 2023-08-15 Although Skunk/BCIAIVPHL-1080/2023 | 2023-04-20 Aturkey/South_Delete/22-037700-001/2022 | 2022kunk/AB/FAV-0897-02/2022 | 2022-07-19 AShiped SkunkBCIAWPHL-968202312023-02-28 AintNebraka/23-001172-001/2023 | 2023-01-10 /eagle/Japan/OUAVM-62888/2022 | 2022-11-23 Mahite-tailed agrical-biologick/20221123001/202212022-11-2 Alpolar_bear/Alaska/23-038123/2023 | 2023-10-01 Alment sheataster/Alexia/25-025002-00520021 2025-07-0 AlStriped_Skunk/BC/AIVPHL-977/2023 | 2029-03-0 Red for/Norwey2022-07-1788-27/2022 | 2022-07-28 ARed_FoxNUFAV-00752023 | 2023-01-

ideiry_cow/Coloredo/BI-ME-001/2024 | 2024-08-24

Dairy cow H5N1, submitted by USDA missing state info and incomplete collection date

A/dairy cow/USA/24 027664-001/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 027650-001/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 027098-002/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 027651-001/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 025992-001/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 028248-004/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 025996-002/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 027652-001/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 027805-002/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 027805-003/2024 | 2024 (Newly added) (Cow milk) A/dairy cow/USA/24 027807-003/2024 | 2024 (Newly added) (Cow milk) A/California/146/2024 | 2024-10-02 (Newly added) A/California/134/2024 | 2024-09-30

A/California/135/2024 | 2024-10-01

HA D104

S336N

Human H5N1, submitted by US CDC with state info and complete collection date

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence and meta data on which the analysis is based.

On 15. November, specimen data of British Columbia's first human case, a teenager who is currently hospitalized, with an unknown route of exposure (EPI_ISL_19548836) was made available by British Columbia Centre for Disease Control (BCCDC). Additionally, specimen data from poultry, collected between 20. and 23. October, was made available by the Canadian Food Inspection Agency. The latest trees, based on representative subsamples, are dated to 18 November 2024.

Or H10N3 as next possible pandemic?

First human case 2021 in Jiangsu Province, China. Reoccurrence 2024 in Yunnan. Human host adaptation marker G228S (G238S) in 31 of 45 avian samples (Asia, since 2020).

Or Oropouche?

Important note: In the <u>GISAID EpiFlu¹¹¹ Database Access Agreement</u>, you have accepted certain terms and conditions for viewing and using data regarding influenza viruses. To the extent the Database contains data relating to non-influenza viruses, the viewing and use of these data is subject to the same terms and conditions, and by viewing or using such data you agree to be bound by the terms of the <u>GISAID EpiFlu¹¹¹ Database Access Agreement</u> in respect of such data in the same manner as if they were data relating to influenza viruses.

Top 15 Country PieChart Click Legend to show/hide areas

1 🖶

Brazil

20240902

19556661

Thank you!

Committed to GIHSN

GIHSN 12TH ANNUAL MEETING, 25-26 NOVEMBER 2024

PERSPECTIVES AND CHALLENGES FOR INFLUENZA VACCINE SELECTION

Nicola LEWIS, Crick WHO CC

Foundation for Influenza Epidemiology

Coordination

GIHSN ANNUAL MEETING, 25 NOVEMBER 2024

WORKSHOP 1: SCALING UP AND OPTIMIZING WGS

PLENARY BRIEF, BY BRUNO LINA, NIC LYON, FRANCE

Foundation for Influenza Epidemiology Sous l'égide de Fondation de France

WORKSHOP 1 – OBJECTIVES

Scaling up and optimizing WGS in GIHSN, 2024-25 season

- Specimen selection for WGS
- Which options for sequencing: Locally / In Lyon (GIHSN platform) / With WHO CC
- Considerations on shipment (to be optimized)
- Upload of results on GISAID (GIHSN tag)

 \rightarrow Experience sharing between sites to identify barriers & group discussions to find solutions

Expected outcomes: Set up best practices and improve WGS scale up during upcoming 2024-25 surveillance period

SPECIMEN SELECTION FOR WGS

□ Current targets (season 2024-25)

- WGS for a minimum of 50 to 100 influenza viruses will be expected. If number of influenza positive cases are low, site is encouraged to complete WGS of SARS-COV-2
 - If 50 to 100 Flu+ -> WGS for all samples should be done
 - If more than 100 Flu+, the following WGS algorithm should apply:
 - all severe cases (ICU admission, mechanical ventilation)
 - 10-25 samples per month during the 6 months of flu season stratified by age (<5yo, 5-65, >65)
 - all samples off season

□ Aspirational target (starting season 2025-26): 200 WGS per site

Flu first and completed by SARS-COV2 if flu+ is low

Same algorithm should apply

Next year 2025-26, grant allocation will also consider lab resources for the WGS done locally

WHICH OPTIONS FOR SEQUENCING: LOCALLY / IN LYON (GIHSN PLATFORM) / WITH WHO CC?

What to do for the 2024-25 season

- Can you proceed and scale up with WGS locally?
- If not or only partially, where to send the samples (Lyon ? WHO CC?)

Summarize challenges and main recommendations

CONSIDERATIONS ON SHIPMENT (TO BE OPTIMIZED)

What to do for the 2024-25 season

For those that are not doing locally:

- Shipment of samples is very expensive (between 2000 and 3000 euros) this should be organized when the batch is big enough
- Batch of 25 minimum with some exceptions (before Vaccine Composition meetings)
- Check for CT value

Summarize challenges and main recommendations

UPLOAD OF RESULTS ON GISAID (GIHSN TAG)

What to do for the 2024-25 season

- WGS data uploaded to GISAID by site in a reasonable timeframe, so results are available for the WHO Vaccine Composition Meetings
- Link between WGS data uploaded in GISAID and clinical data in GIHSN required
- Identification of GIHSN specimens for exhaustive uploads
 - E.g. A/PERU/GIHSN-HCL024130069401/2024

Summarize challenges and main recommendations

WORKSHOP 1 – AGENDA

□ 14.45 to 14.50: Split the attendance in 3 predefined groups

Move from plenary room to groups' room

□ **14.50 to 15.30:** Groups discussions on pre-defined topics/questions

Only for in-person participants

One/two moderators to support discussion – template slides to report outputs

□ **15.30 to 16.15:** Sharing in Plenary

One rapporteur (site) per group to present outputs (8') and then plenary discussions/wrap-up

WORKSHOP 1 - GROUPS

Group 1	Group 2	Group 3				
lerators: Bruno Lina & Cédric Mahé m: plenary Salle Ste-Victoire	Moderators: John McCauley & Catherine Commaille-Chapus Room: Salle Jas de Bouffan	Moderators: Dmitriy Pereyaslov & Laurence Torcel-Pagnon Room: Salon Olivier				
ôte d'Ivoire		Kenya				
non	South Africa	Uganda				
	New Zealand					
	Spain - Valencia	Pakistan				
u	Canada	Romania				
		USA				

All participants are invited to join the workshop splitting themselves into the 3 groups

GIHSN ANNUAL MEETING, 25 NOVEMBER 2024

RESEARCH PROJECTS LEVERAGING THE GIHSN PLATFORM

Moderated by Marta Nunes, CERP & Sandra Chaves, Foundation for Influenza Epidemiology

Foundation for Influenza Epidemiology Sous l'égide de

Fondation de France

RESEARCH PROJECTS LEVERAGING THE GIHSN PLATFORM

- Specific influenza activity from South Africa Vicky Baillie, University of the Witwatersrand, Johannesburg (7'+3')
- Hospital-based Surveillance of SARI in Senegal: focus on RSV Ndongo Dia, Institut Pasteur of Dakar, Dakar (*remotely*) (7'+3')
- Pediatric Influenza 2024: Clinical and Laboratory Aspects Sonia M Raboni, Pequeno Príncipe Hospital and Federal University of Parana, Brazil (7'+3')
- Association of Influenza Viral Genetic Information with Severity Markers in Hospitalized Patients - Aung Pone Myint, CERP, Hospices Civils de Lyon and Université Claude Bernard Lyon 1 (*remotely*) (7'+3')
- EV-D68 surveillance: protocol overview and proposed collaboration with the GIHSN -Miranda Delahoy, US Centers for Disease Control and Prevention (7'+3')

GIHSN ANNUAL MEETING, 25 NOVEMBER 2024 SPECIFIC INFLUENZA ACTIVITY FROM SOUTH AFRICA

Vicky Baillie, University of the Witwatersrand, Johannesburg

BACKGROUND TO RSA SITE

- The study takes place at the Chris Hani Baragwanath Academic Hospital (CHBAH) in Soweto, South Africa
 - Large (3,400 beds), secondary-tertiary facility
 - Public hospital
- Soweto has a total population approx. 1.9 million people including 190 000 <5 year old
 - Rural, low income population
 - HIV prevalence among pregnant women \rightarrow ~28%
- Only paediatric patients are enrolled into the study
- Influenza season in South Africa normally peaks between April to September with peak in June
- Pre-pandemic incidence was 54/100 000 children<5 years of age
- Previously we have only tested for influenza, RSV, hMPV and *Bordetella pertussis*
- Started testing for SARS-CoV-2 in 2020
- Started testing for hRV, PIV-3, AdenoV and EnteroV in 2023
- Enroll >3500 participants per year

<u>-2020</u> <u>-2021</u> <u>-2022</u> <u>-2023</u> <u>-2024</u>

-2019

Hospital Surveillance

OTHER TARGETS

Collection month (2024)	Colour
Jan	
Feb	
Mar	
Apr	
May	
Jun	
Jul	
Aug	

Age (years)	Colour
< 1 year	
1 < age ≤ 5	
5 < age ≤ 18	
19 ≤ age ≤ 60	
years > 60	

Location (RSA)	Color
Gauteng	
Kwazulu Natal	
Limpopo Province	
Mpumalanga	
North West	
Province of Eastern Cape	
Province of the Western Cape	
Not specified	

Subclade	Colour
5a.2a	
5a.2a.1	

SOME INTERESTING RECOMBINATION EVENTS!

Consensus	1 	250	500	750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000	3,250	3,500	3,691
155T Coverage 0L																
Identity			in de la composition										· /······			
1. A/South_Africa/PET32488/2024 EPI_ISL_19342702 6B.1A.5a.2a pdm09	┗᠊ᡋᡊ					Inser	tion in HA	region					ж	L H	H	HCH.
2. A/Wisconsin/67/2022 EPI_ISL_15928563 6B.1A.5a.2a.1 pdm09				0			H1N	I1 HA Vacci	ne 2024				ТИТТИ			Шн
3. A/Massachusetts/18/2022 EPI ISL 16968012 3C.2a1b.2a.2a.3a.1				H												
							H3N	l2 HA Vacci	ne_2024							
4. B/Austria/1359417/2021 EPI_ISL_983345 V1A.3a.2 Victoria	D-B-HC		1				B Vict	oria HA Va	ccine_2024			<u> </u>				H
5. A/South_Africa/PET31500/2024 EPI_ISL_19340917 6B.1A.5a.2a pdm09 6. A/South_Africa/PET31717/2024 EPI_ISL_19340944 6B.1A.5a.2a pdm09 7. A/South_Africa/PET31949/2024 EPI_ISL_19342076 6B.1A.5a.2a pdm09 8. A/South_Africa/PET31955/2024 EPI_ISL_19342077 6B.1A.5a.2a pdm09 9. A/South_Africa/PET32118/2024 EPI_ISL_19340940 6B.1A.5a.2a pdm09 10. A/South_Africa/PET32185/2024 EPI_ISL_19342078 6B.1A.5a.2a pdm09																

THANK YOU!

Global Influenza Hospital Surveillance

Network

THANKS TO ALL THE STAFF AT WITS-VIDA THE PARTICIPANTS AND THEIR FAMILIES THE FOUNDATION FOR THE FUNDING

GIHSN ANNUAL MEETING, 25 NOVEMBER 2024

HOSPITAL-BASED SURVEILLANCE OF SARI IN SENEGAL: FOCUS ON RSV

Ndongo DIA, Institut Pasteur of Dakar, Senegal

- ✓ Initiated in 2015, SARI surveillance is conducted in collaboration with 7 reference hospitals
- ✓ Extended SARI Definition: Severe (requiring hospitalization) AND Acute (onset within the last 10 days) AND Respiratory Infection (having cough or shortness of breath). In infants <6 months old, also include: Apnea OR Sepsis (fever, hypothermia, shock, seriously ill with no apparent cause)</p>
- ✓ Collect data in relation to RSV infection: burden (especially in infants), vaccination perspectives, genetic monitoring (full genome sequencing)
- ✓ SARI surveillance restricted in DAKAR (capital City): main hospitalization capacities of the country, most densely populated region

Lab Diagnostic

SARI samples, in addition to being tested for respiratory viruses (Flu, SARS-CoV-2, RSV, RV, EV, HMPV, AdV, BoV, human CoVs, PIVs), are also tested for the most common respiratory bacteria including: Haemophilus influenzae, Klebsiella Pneumoniae, Moraxella pneumonae, Staphylococcus aureus, Streptococcus pneumoniae, Bordetella Pertussis, Streptococcus Pneumoniae

Active surveillance program of EV-D68: all ILI and Rhino/Enterovirus-positive SARI samples are routinely tested for EV-D68.

Genomic surveillance

Whole-genome sequencing workflow

Genomic sequences submitted to the GISAID database

Global Influenza

Network

Hospital Surveillance

- From January, 1 2022 to October 31 2024, **2850 SARI samples** were received at the NIC and analyzed for RSV
- RSV was detected in 10,7% (306/2850)

- Highest RSV detection rate in patients aged < 6 months, (65%; 199/306)</p>
- Lowest detection rate in patients aged > 15 years old with only one case (0.7%; 1/306)
- RSV was detected in 27.8% (85/306) in the age group 6 months-2 years and 5,5% (17/306) in patients aged 3-15 years.

 At the time of admission, besides cough and fever, breathing difficulties are more commonly reported among RSV positif patients

Repartition by symptoms

Global Influenza Hospital Surveillance Network

- More than half (57.2%) of all inpatients infected with RSV had bronchiolitis, whereas pneumonia was diagnosed in 25.5%.
- Acute bronchitis and asthma exacerbation were diagnosed in 6.9% and 6.5% of RSV positive patients respectively

From January 2022 through October 2024, we observed a clear seasonal pattern of RSV activity in Senegal (highest detection rates were observed between August and November each year).

Global Influenza Hospital Surveillance Network

Extension of SARI surveillance in other regions: current decentralizing of laboratory activities to cover remote regions of the country.

Thank you!

GIHSN ANNUAL MEETING, 25 NOVEMBER 2024 "PEDIATRIC INFLUENZA 2024 IN PARANÁ, SOUTHERN BRAZIL: CLINICAL AND EPIDEMIOLOGICAL ASPECTS"

RABONI, Sonia, Pequeno Principe Hospital, Curitiba, Brazil

NUMBER OF INFLUENZA CASES BY EPIDEMIOLOGICAL WE 2024

Influenza Detection: Rapid Test Influenza subtype: A H1N1

Dequeno **PRÍNCIP**

INFLUENZA CASES – CLINICAL AND DEMOGRAPHIC PROF

Network

		WAY .
	Non-ICU (n = 170)	ICU (n = 19, 10%)
Male	95 (56%)	5 (26%)
LOS, day (IQR)	3 (2-6)	12 (8-17)
Age, y, Median (IQR)	5 (2-9)	6.8 (2-6)
Comorbidities	75 (44%)	12 (63%)

LOS = Lenght of stay

Copyright GIHSN 2024 | 66

SARS DATA AND INFLUENZA VACCINE 2024 - BRAZIL

Porcentagem da população-alvo nos grupos prioritários de crianças, gestantes, puérperas, idosos e povos indígenas vivendo e 577% dígenas com doses administradas da vacina contra Influenza por unidade da federação de residência do paciente

Epidemiological Year 2024

- 97,469 cases SARS
 - 19.3% influenza A
 - 0.4% influenza B
 - 45.0% RSV

Global Influenza

Network

Hospital Surveillance

• 18.8% SARS-CoV-2

Idosos	30.304.417	80.292	24.414	14.358.156	154.774	14.617.636	48.24% -	
Crianças	11.744.343	1.455.824	898.728	5.730.557	47.075	8.132.184	69,24% -	
Comorbidades	8.682.264	9.575	3.655	2.544.538	15.604	2.573.372 -		29,64%
Pessoas com deficiência permanente	7.686.383	723	375	209.460	1.451	212.009 -		2,76%

https://infoms.saude.gov.br/extensions/SEIDIGI_DEMAS_INFLUENZA_2024_RESIDENCIA/SEIDIGI_DEMAS_INFLUENZA_2024_RESIDENCIA.html https://portal.fiocruz.br/noticia/2024/07/infogripe-sudeste-tem-aumento-no-numero-de-hospitalizacoes-por-influenza-vsr-e______Copyright GIHSN 2024_1_67

- In 2024, pediatric influenza hospitalizations surpassed those of the 2009 pandemic.
- Severe cases shifted to children aged 5–12 y, rather than under 3 y.
- Over half of hospitalized children had no comorbidities.
- Rare symptoms like parotitis and neurological issues were reported but had good outcomes.
- Influenza B resurgence (7.4%)
- Seasonal peaks in winter and spring were observed.
- Low vaccination rates likely contributed to increased hospitalizations; further studies are needed.
 - By June 3, Paraná's vaccination rate was 38.01%, with children at 32.23%.

GIHSN ANNUAL MEETING, 25 NOVEMBER 2024

ASSOCIATION OF INFLUENZA VIRAL GENETIC INFORMATION WITH SEVERITY MARKERS IN HOSPITALIZED PATIENTS

Aung Pone MYINT

Center of excellence in respiratory pathogens (CERP), Hospices Civils de Lyon, and Université Claude Bernard Lyon 1

Foundation for Influenza Epidemiology Sous l'égide de Fondation de France

INTRODUCTION

- Influenza 54 million cases, 8.2 million severe cases, and 145,000 deaths globally in 2017 (Troeger et al., 2019).
- A/H3N2 subtypes higher risk of hospitalization compared with A/H1N1 or influenza B (Rothman et al., 2023).
- A/H1N1 more severe outcomes in hospitalized patients (Chagvardieff et al., 2018; Chaves et al., 2013; Delgado-Sanz et al., n.d.; Derqui et al., 2022; Lytras et al., 2020; Minney-Smith et al., 2019; Sumner et al., 2023), including in GIHSN hospitals (Cohen et al., 2023).
- Reassortant 3C.2a2 clade of A/H3N2 more severe outcomes (Liu et al., 2024).

71

To investigate the association of influenza viral genetic information and markers of clinical disease severity

MATERIALS AND METHOD

Global Hospit Netwo
RESULTS - SUBTYPES AND CLADES

Global Influenza Hospital Surveillance Network

74

75

PATIENTS CHARACTERISTICS AMONG SUBTYPES AND CLADES

- Different age groups distribution
- Different proportion of antiviral usages ٠
- Different proportion of antibiotics usages ٠ observed among subtypes, and clades within A/H1N1 and A/H3N2 subtypes.

NOTE: 10 of 11 patients with 3C.2a1b.2a.2a.3b needed ICU admission in 2022/23 (all from Pakistan), while all 11 patients reported in 2021/22 were not in ICU

RESULTS OF SIGNIFICANT ADJUSTED MODELS

Odds ratios of the subtypes and clades for 2022/23 season (Significant models)

Very wide confidence intervals for the clade comparisons for ICU admission and mechanical ventilation due to the low number of severe cases

P137S, T277A, E356D – mutations for 6B.1A.5a.2a.1 F79V and S156H - mutations for 3C.2a1b.2a.2b

76

CONCLUSIONS

In the 2022/23 season

- > Patients with A/H1N1 showed higher severity compared with other subtypes.
- Clades 6B.1A.5a.2.1 and 3C.2a1b.2a.2b were associated with more severe outcomes compared with other A/H1N1 and A/H3N2 clades, respectively.
- Future: to investigate the association of severity markers with A/H1N1 clade 6B.1A.5a.2.1 and the specific mutations of A/H3N2 clade 2a.2b.

Limitations

- Analyses conducted only among hospitalized patients with genome sequencing data and complete information for severity definitions.
- Different surveillance populations and settings by GIHSN site, including hospital type and sequencing capacity.

REFERENCES

- Chagvardieff, A., Persico, N., Marmillot, C., Badiaga, S., Charrel, R., & Roch, A. (2018). Prospective comparative study of characteristics associated with influenza A and B in adults. Médecine et Maladies Infectieuses, 48(3), 180–187. https://doi.org/10.1016/j.medmal.2017.11.007
- Chaves, S. S., Aragon, D., Bennett, N., Cooper, T., D'Mello, T., Farley, M., Fowler, B., Hancock, E., Kirley, P. D., Lynfield, R., Ryan, P., Schaffner, W., Sharangpani, R., Tengelsen, L., Thomas, A., Thurston, D., Williams, J., Yousey-Hindes, K., Zansky, S., & Finelli, L. (2013). Patients Hospitalized With Laboratory-Confirmed Influenza During the 2010–2011 Influenza Season: Exploring Disease Severity by Virus Type and Subtype. The Journal of Infectious Diseases, 208(8), 1305–1314. https://doi.org/10.1093/infdis/jit316
- Cohen, L. E., Hansen, C. L., Andrew, M. K., McNeil, S. A., Vanhems, P., Kyncl, J., Domingo, J. D., Zhang, T., Dbaibo, G., Laguna-Torres, V. A., Draganescu, A., Baumeister, E., Gomez, D., Raboni, S. M., Giamberardino, H. I. G., Nunes, M. C., Burtseva, E., Sominina, A., Medić, S., ... Chaves, S. S. (2023). Predictors of Severity of Influenza-Related Hospitalizations: Results From the Global Influenza Hospital Surveillance Network (GIHSN). The Journal of Infectious Diseases, 229(4), 999–1009. <u>https://doi.org/10.1093/infdis/jiad303</u>
- Delgado-Sanz, C., Mazagatos-Ateca, C., Oliva, J., Gherasim, A., & Larrauri, A. (n.d.). Illness Severity in Hospitalized Influenza Patients by Virus Type and Subtype, Spain, 2010–2017—Volume 26, Number 2—February 2020—Emerging Infectious Diseases journal—CDC. https://doi.org/10.3201/eid2602.181732
- Derqui, N., Nealon, J., Mira-Iglesias, A., Diez-Domingo, J., Mahé, C., & Chaves, S. S. (2022). Predictors of influenza severity among hospitalized adults with laboratory confirmed influenza: Analysis of nine influenza seasons from the Valencia region, Spain. Influenza and Other Respiratory Viruses, 16(5), 862–872. https://doi.org/10.1111/irv.12985
- Liu, H., Shaw-Saliba, K., Westerbeck, J., Jacobs, D., Fenstermacher, K., Chao, C.-Y., Gong, Y.-N., Powell, H., Ma, Z., Mehoke, T., Ernlund, A. W., Dziedzic, A., Vyas, S., Evans, J., Sauer, L. M., Wu, C.-C., Chen, S.-H., Rothman, R. E., Thielen, P., ... Pekosz, A. (2024). Effect of human H3N2 influenza virus reassortment on influenza incidence and severity during the 2017–18 influenza season in the USA: A retrospective observational genomic analysis. The Lancet Microbe, 5(8), 100852. https://doi.org/10.1016/S2666-5247(24)00067-3
- Lytras, T., Andreopoulou, A., Gkolfinopoulou, K., Mouratidou, E., & Tsiodras, S. (2020). Association between type-specific influenza circulation and incidence of severe laboratory-confirmed cases; which subtype is the most virulent? Clinical Microbiology and Infection, 26(7), 922–927. https://doi.org/10.1016/j.cmi.2019.11.018
- Minney-Smith, C. A., Selvey, L. A., Levy, A., & Smith, D. W. (2019). Post-pandemic influenza A/H1N1pdm09 is associated with more severe outcomes than A/H3N2 and other respiratory viruses in adult hospitalisations. Epidemiology & Infection, 147, e310. https://doi.org/10.1017/S095026881900195X
- Rothman, E., Olsson, O., Christiansen, C. B., Rööst, M., Inghammar, M., & Karlsson, U. (2023). Influenza A subtype H3N2 is associated with an increased risk of hospital dissemination an observational study over six influenza seasons. Journal of Hospital Infection, 139, 134–140. https://doi.org/10.1016/j.jhin.2023.06.024
- Sumner, K. M., Masalovich, S., O'Halloran, A., Holstein, R., Reingold, A., Kirley, P. D., Alden, N. B., Herlihy, R. K., Meek, J., Yousey-Hindes, K., Anderson, E. J., Openo, K. P., Monroe, M. L., Leegwater, L., Henderson, J., Lynfield, R., McMahon, M., McMullen, C., Angeles, K. M., ... Garg, S. (2023). Severity of influenza-associated hospitalisations by influenza virus type and subtype in the USA, 2010–19: A repeated cross-sectional study. The Lancet Microbe, 4(11), e903–e912. https://doi.org/10.1016/S2666-5247(23)00187-8
- Troeger, C. E., Blacker, B. F., Khalil, I. A., Zimsen, S. R. M., Albertson, S. B., Abate, D., Abdela, J., Adhikari, T. B., Aghayan, S. A., Agrawal, S., Ahmadi, A., Aichour, A. N., Aichour, I., Aichour, M. T. E., Al-Eyadhy, A., Al-Raddadi, R. M., Alahdab, F., Alene, K. A., Aljunid, S. M., ... Reiner, R. C. (2019). Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: An analysis for the Global Burden of Disease Study 2017. The Lancet Respiratory Medicine, 7(1), 69–89. https://doi.org/10.1016/S2213-2600(18)30496-X

78

Global Influenza Hospital Surveillance Network

GIHSN ANNUAL MEETING, 25 NOVEMBER 2024

EV-D68 SURVEILLANCE: PROTOCOL OVERVIEW AND PROPOSED COLLABORATION WITH GIHSN

Miranda Delahoy, US Centers for Disease Control & Prevention

ENTEROVIRUS D68 (EV-D68) CAN CAUSE SERIOUS ILLNESS AND STRAIN HEALTHCARE CAPACITY

severe respiratory illness

strain healthcare capacity

acute flaccid myelitis

PRIMARY OBJECTIVES OF EV-D68 GLOBAL SURVEILLANCE

- Retrospectively describe EV-D68 detections and percent positivity among hospitalized children previously enrolled in select GIHSN and Abbott Pandemic Defense Coalition (APDC) global sites and tested for EV-D68 during 2016–2024.
- Describe EV-D68 detections and percent positivity among all hospitalized children prospectively enrolled in select GIHSN and APDC global sites beginning in 2025, including positivity by country and age.
- Describe clinical presentation & severity of illness among children hospitalized with EV-D68 enrolled in select GIHSN and APDC global sites and explore any geographic variations in clinical & demographic characteristics among patients hospitalized with EV-D68.

THREE PARTNERS BRING EPIDEMIOLOGIC AND LABORATORY EXPERTISE TO A PROPOSED GLOBAL EV-D68 SURVEILLANCE NETWORK.

Global Influenza Hospital Surveillance Network

CENTERS FOR DISEASE CONTROL AND PREVENTION

Global Influenza Hospital Surveillance Network

Abbott Pandemic Defense Coalition (APDC)

- Global network of sites collecting specimens for early detection & response to pandemic threats
- Laboratory expertise and resources (EV-D68 assay)

US Centers for Disease Control and Prevention (CDC)

- EV-D68 surveillance expertise
- Validated EV-D68 assay
- Capacity for testing respiratory specimens for EV-D68 and providing technical assistance

EV-D68 GLOBAL SURVEILLANCE VISION

- EV-D68 assay validation
- Support for growing testing capacity
- EV-D68 data compilation and analysis

ASSAY VALIDATION AND EV-D68 RETROSPECTIVE DATA COMPILATION

- Sites already testing for EV-D68 will be invited to have their assays validated.
- CDC will create a panel of numbered samples (some positive, some negative for EV-D68) to conduct a blinded assay comparison.
- Panels will be tested at participating GIHSN site laboratories using their EV-D68 assays.
- CDC will provide technical assistance to investigate and understand any discrepancies.
- Sites using validated EV-D68 assays will be invited to share available EV-D68 results from specimens previously collected under the GIHSN protocol and tested during 2016–2024.

RETROSPECTIVE AND PROSPECTIVE EV-D68 TESTING

Retrospective EV-D68 testing

• Select sites with stored respiratory specimens (from 2016–2024) may participate in retrospective EV-D68 testing.

Prospective EV-D68 testing

- Sites with current capacity or interest in growing capacity for EV-D68 testing may participate.
- Certain sites may also ship specimens to APDC sites for testing.

POTENTIAL MECHANISMS FOR RETROSPECTIVE AND PROSPECTIVE EV-D68 TESTING

Potential testing mechanisms

- Sites conduct additional testing using their own validated assays.
- Local testing with reagents provided through CDC's International Reagent Resource (IRR).
- Sites with an Abbott m2000* may test locally with tests provided by Abbott.
- GIHSN sites with an APDC site in the same country may have testing conducted at the in-country APDC site.

Data compilation

• EV-D68 test results will be sent to Impact Healthcare monthly with a unique identifier to link to GIHSN surveillance data. GIHSN will send de-identified line-listed data to CDC.

GIHSN & APDC SITE LOCATIONS (2024-2025)

Global Influenza Hospital Surveillance Network

CONSIDERATIONS FOR PRIORITIZING SITES FOR PARTICIPATION

- Sites enrolling higher numbers of children with ARI annually
- Ability and willingness to test & share data
 - Additional support available for sites with Abbott m2000 platform* or APDC site in-country
- **General interest** in participating and able to meet project commitments
- **Geographic representativeness**, if relevant

SITE RESPONSIBILITIES (EV-D68 SURVEILLANCE)

- Share information on number of stored specimens.
- Coordinate and conduct local or in-country testing.
 - May involve shipping samples within the same country.
- Monthly EV-D68 laboratory results shared with GISHN network.
- Attend biannual and *ad hoc* EV-D68 surveillance meetings (virtual).
- Review reports and collaborate on potential publications.

BENEFITS OF COLLABORATION

share & publish information

EV-D68 assay validation

testing support

laboratory & epi collaboration

Global Influenza Hospital Surveillance Network

Note: participation is optional

FOR ADDITIONAL INFORMATION & TO EXPRESS INTEREST

- Please stop by the EV-D68 kiosk after this presentation!
- Contact—US CDC: Miranda Delahoy (vuo0@cdc.gov)
- Contact—Abbott: Mary Rodgers (<u>mary.rodgers@abbott.com</u>)

Thank you!

GIHSN/Impact Healthcare: Sandra Chaves, Catherine Commaille-Chapus

APDC: Francisco Averhoff, Mary Rodgers

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov **Division of Viral Diseases, CDC:** Adriana Lopez, Terry Ng, Sarah Kidd

Coronavirus and Other Respiratory Viruses Division (CORVD), CDC: Claire Midgley, Melisa M. Shah GIHSN & APDC Pls and site personnel

Images from the Noun Project, credits: IcoLabs, Adrien Coquet, Vectorstall, Dicky Prayudawanto, Anconer Design, Kiran Shastry, feri ulan taufiq

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

CLOSING OF DAY 1

Foundation for Influenza Epidemiology Sous l'égide de

Fondation de France Coordination