

## GIHSN 11TH GLOBAL ANNUAL MEETING 16-17 November 2023



Foundation for Influenza Epidemiology Sous l'égide de

Fondation de France

## WELCOME TO THE GIHSN GLOBAL ANNUAL MEETING 2023



### GIHSN GLOBAL ANNUAL MEETING 2023

16 – 17 November 2023 WHO HQ, Geneva



Global Influenza Hospital Surveillance Network Global Annual Meeting 2023





### AGENDA DAY 1 PM

| <u>13:</u> 30 - 14:45  | <ul> <li>GIHSN contribution to influenza vaccine selection</li> <li>Presentations &amp; discussion</li> <li>Perspectives and challenges for influenza vaccine selection</li> <li>Role and contribution of GIHSN</li> <li>GISAID and GIHSN</li> </ul>                                                                                                                                                                                                        | <u>Moderator</u> : J McCauley,<br>Crick Institute<br>N Lewis, Crick Institute<br>B Lina, CIRI<br>S Maurer-Stroh, GISAID |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| <u>14:</u> 45 - 16:00  | <ul> <li>Leveraging on the GIHSN database &amp; network<br/>Presentations &amp; discussion</li> <li>Enterovirus surveillance and proposed collaboration<br/>with the GIHSN (25' presentation &amp; discussion)</li> <li>The importance of denominator for burden of disease<br/>estimates and how it could be implemented in the<br/>GIHSN (25' presentation &amp; discussion)</li> <li>The SevScale project (25' presentation &amp; discussion)</li> </ul> | <u>Moderator</u> :<br>S Chaves, FIE<br>M Delahoy, US CDC<br>C Viboud, NIH<br>B Boudewijns, Nivel                        |
| <u> 16:</u> 00 - 16:30 | Coffee break                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |
| <u>16:</u> 30 - 17:45  | <ul> <li>Collaboration with WHO, based on the Memorandum of<br/>Understanding between WHO and the Foundation<br/>Presentations &amp; discussion</li> <li>Virus co-circulation and alert mechanisms (25'<br/>presentation &amp; discussion)</li> <li>Combination of severity and WGS for strain selection<br/>(25' presentation &amp; discussion)</li> <li>Burden of disease estimation (25' presentation &amp;<br/>discussion)</li> </ul>                   | <u>Moderators</u> : W Zhang,<br>WHO & C Mahé, FIE<br>JM Heraud, WHO<br>M Samaan & W Zhang,<br>WHO<br>S Tempia, WHO      |
| 17.45 . 19.00          | Wron up & Closing of Day 1                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |



Global Influenza Hospital Surveillance Network

### **WEBINAR RULES**



Please do not forget to switch off your microphone when you are not speaking.



Questions will be discussed after the presentations. Please raise your hand or use the chat/discussion button.



A dedicated on-boarding meeting will be proposed to new sites to answer all their questions.



Speakers are kindly asked to stick to the speaking time allotted!

Please note that the meeting will be recorded.

Thank you all for cooperation.





### GIHSN 11TH ANNUAL MEETING, 16-17 NOVEMBER 2023

### **GIHSN CONTRIBUTION TO INFLUENZA VACCINE SELECTION**

### Moderator: John Mc CAULEY, The Francis Crick Institute



Foundation for Influenza Epidemiology

-Nicola LEWIS, Worldwide Influenza Centre at the Francis Crick Institute -Bruno LINA, CIRI, Lyon -Sebastian MAURER-STROH, GISAID



### GIHSN 11TH ANNUAL MEETING, 16-17 NOVEMBER 2023

### **PERSPECTIVES AND CHALLENGES FOR INFLUENZA VACCINE SELECTION**

### Nicola S LEWIS, Director, Worldwide Influenza Centre at the Francis Crick Institute



Foundation for Influenza Epidemiology

### Perspectives and challenges for influenza vaccine selection

**Opportunities for GIHSN and GISRS** 

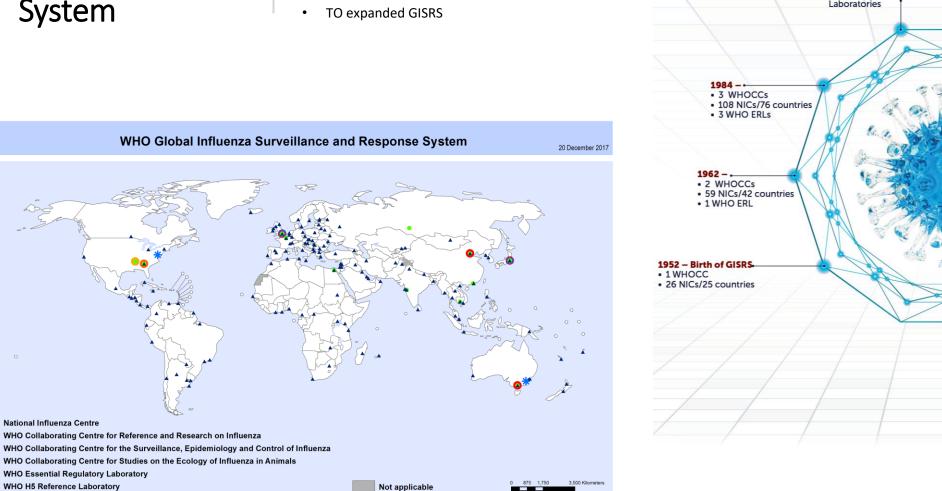
Nicola S. Lewis BSc BVetMed PhD PGCert VetEd FHEA MRCVS

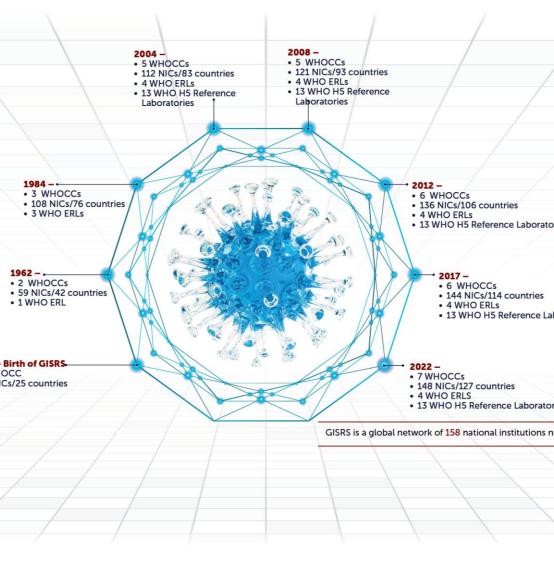
• Director: Worldwide Influenza Centre at the Francis Crick Institute.

The WHO Collaborating Centre for Influenza Research and Response

• Professor in One Health Evolutionary Biology: Royal Veterinary College, University of London




The WHO Global Influenza Surveillance and Response System


.

• Created in 1952, the Global Influenza Surveillance and Response System,

• or GISRS as it is known now, is celebrating 70 years of success as a worldwide network,

- highlighting its value to broad respiratory virus threats including influenza and
- SARS-CoV-2 and setting its sights to the future.





The role of the Worldwide Influenza Centre

#### Characterisation

• fully characterize & preserve representative influenza viruses from outbreaks in different parts of the world.

### Vaccine recommendation

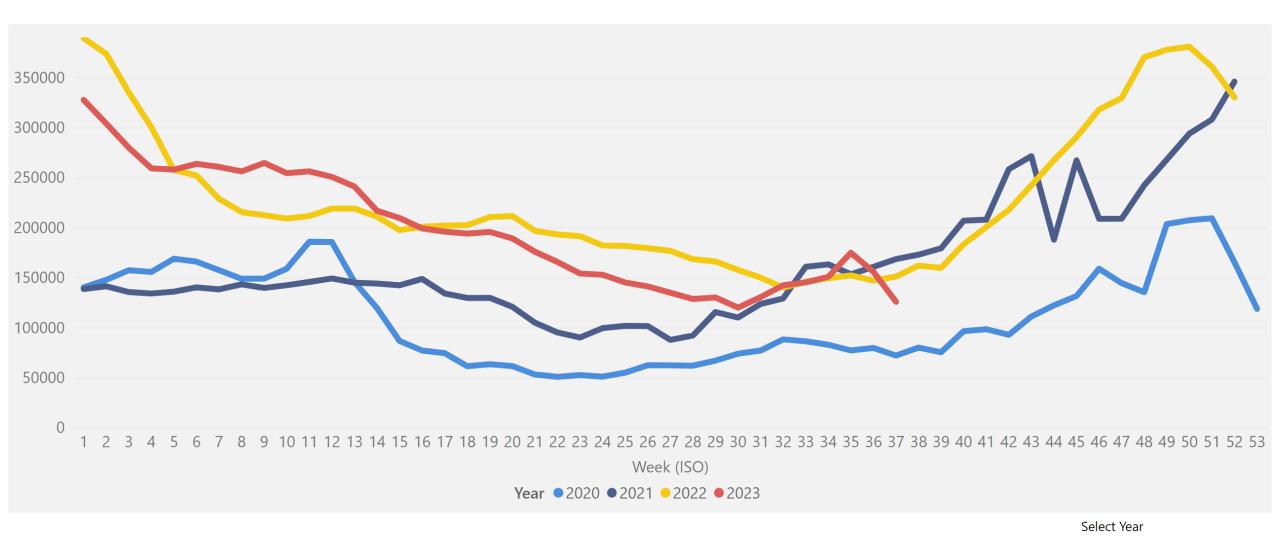
• provide guidance and advise as and when appropriate on the viruses that should be included in influenza vaccines.

### Reference viruses and reagents

 collect & distribute virologic and epidemiological information about the prevalence of influenza in different parts of the world and to develop and distribute reference viruses.

#### Training

• provide training as and when appropriate to experts from WHO National Influenza Centres and other GISRS laboratories in specialized techniques.


#### Research

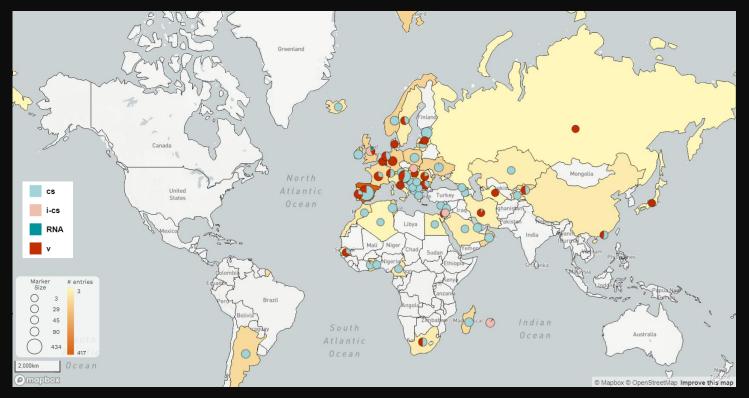
• research related to the properties of influenza viruses and reference activities as prioritized by the WHO Research Agenda for influenza.

#### Pandemic preparedness

 receive, handle and distribute influenza viruses of pandemic potential according to the rules set out by the WHO Pandemic Influenza Preparedness (PIP) Framework

## Number of specimens processed by GISRS by week




2020

2023

Data source: FluNet, (<u>https://www.who.int/tools/flunet</u>), Global Influenza Surveillance and Response System (GISRS)

## Countries, areas and territories shared viruses with WHO CCs

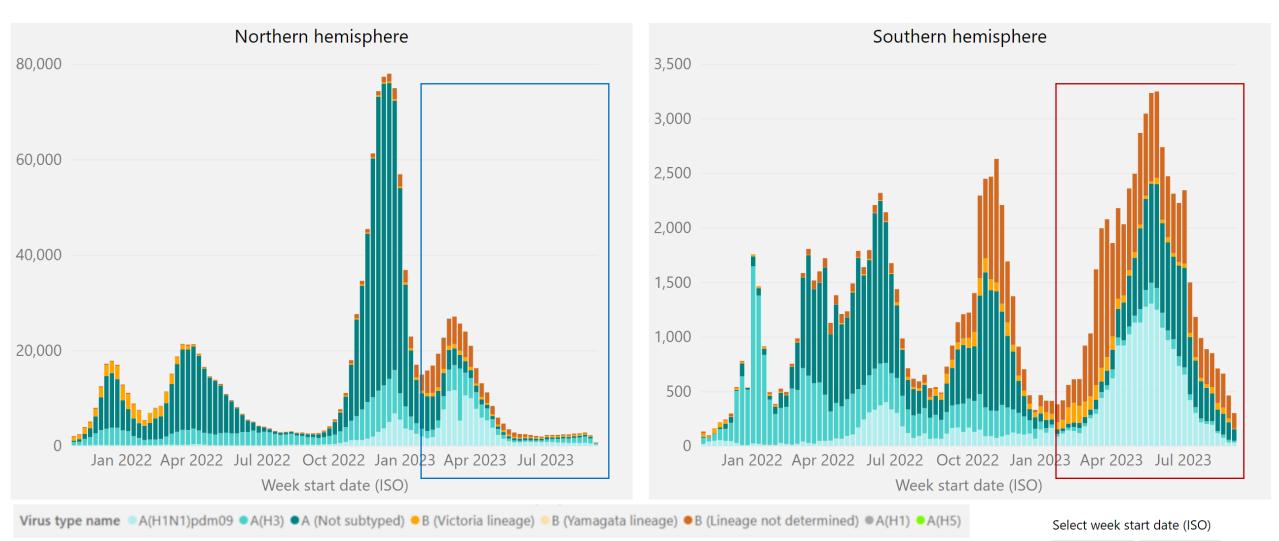




246 CS + VI pairs

### 3811 samples received:

- 2605 clinical samples
- 976 virus isolates
- 14 RNAs
- 216 clinical samples in lysis buffer


numbers received at the WIC

Sample type &

Collection dates week 21-2022 / 20-2023

Collaborative partnerships and training

## Circulation of influenza viruses by hemisphere



11/1/2021

9/4/2023

Н

Data source: FluNet, (<u>https://www.who.int/tools/flunet</u>), Global Influenza Surveillance and Response System (GISRS)

### A(H1N1)pdm09 phylogenetic tree and antigenic map



Source: S. James and D. Smith, Cambridge, UK

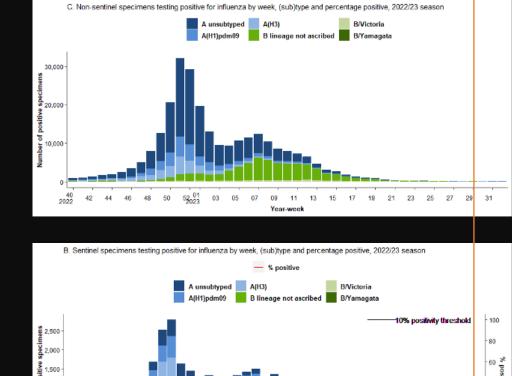
# Recommendation

It is recommended vaccines for use in the 2024 southern hemisphere influenza season contain the following:

### Trivalent: Egg-based Vaccines

- an A/Victoria/4897/2022 (H1N1)pdm09-like virus;
- an A/Thailand/8/2022 (H3N2)-like virus; and
- a B/Austria/1359417/2021 (B/Victoria lineage)-like virus.

### Trivalent: Cell- or recombinant-based Vaccines

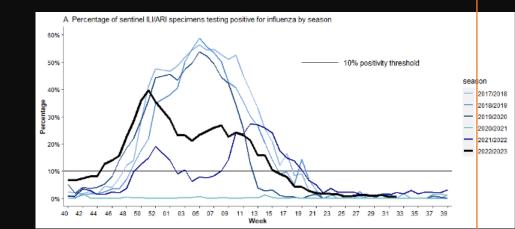

- an A/Wisconsin/67/2022 (H1N1)pdm09-like virus;
- an A/Massachusetts/18/2022 (H3N2)-like virus; and
- a B/Austria/1359417/2021 (B/Victoria lineage)-like virus.

Quadrivalent: egg- or cell culture- or recombinant-based vaccines

- Above 3 components; and
- a B/Phuket/3073/2013 (B/Yamagata lineage)-like virus.

# Surveillance

- Timely sharing of specimens with the CC's
- Genetic and phenotypic characterization including antiviral sensitivity and serology
- Two vaccine composition meetings a year
- Take data from a set time period so encourage multiple shipments throughout season from sentinel systems/sites via NICs




1.000

- 40

25 27

29



# Opportunities for GIHSN and GISRS

- Enhanced linkage between GIHSN sentinel network and GISRS
  - Through NICs
  - Through bilateral collaboration between sentinel node and WHO CC
- Metadata fields from sequence submission identify GIHSN samples for higher resolution analyses
- Options for increased sequence generation through WHOCC's if GIHSN node has limited capacity to generate with timeliness
- Multi-pathogen e.g. SARS-CoV2 for eGISRS
- Other partnership opportunities for discussion with network

### With thanks:

WHO National Influenza Centres WHO Collaborating Centres WHO HQ and WHO Regional Offices ECDC University of Cambridge

Royal Veterinary College

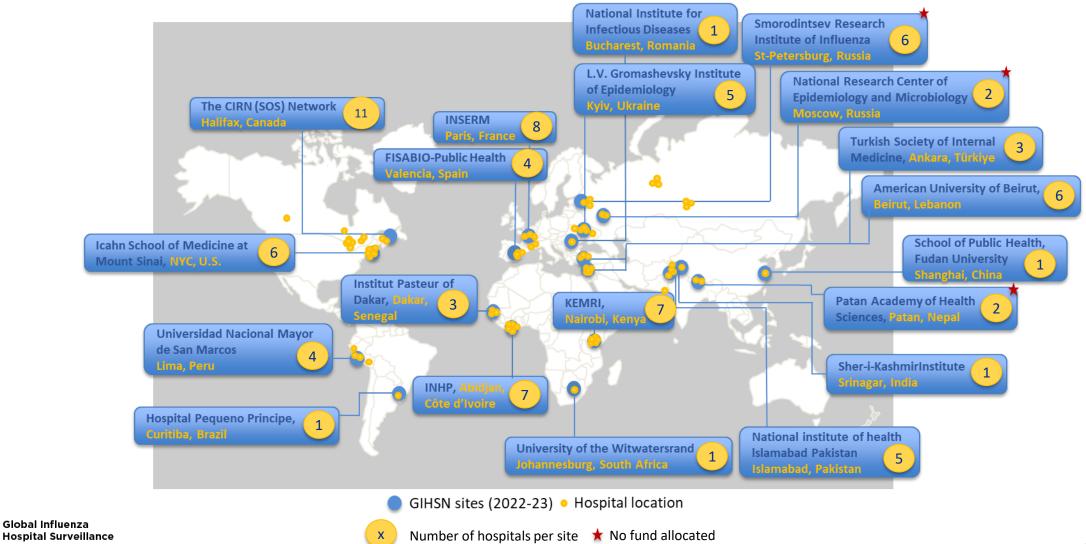




### **GIHSN ANNUAL MEETING 2023**

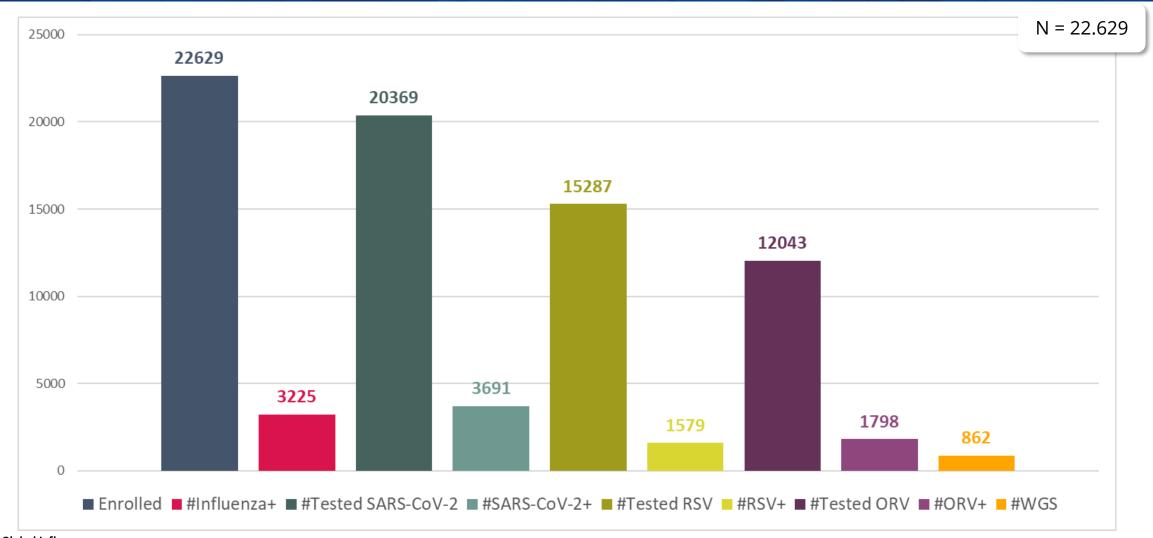
### **GIHSN SEQUENCING ANALYSIS 2022-23**

### Bruno LINA – Virseq platform HCL, Lyon




Foundation for Influenza Epidemiology

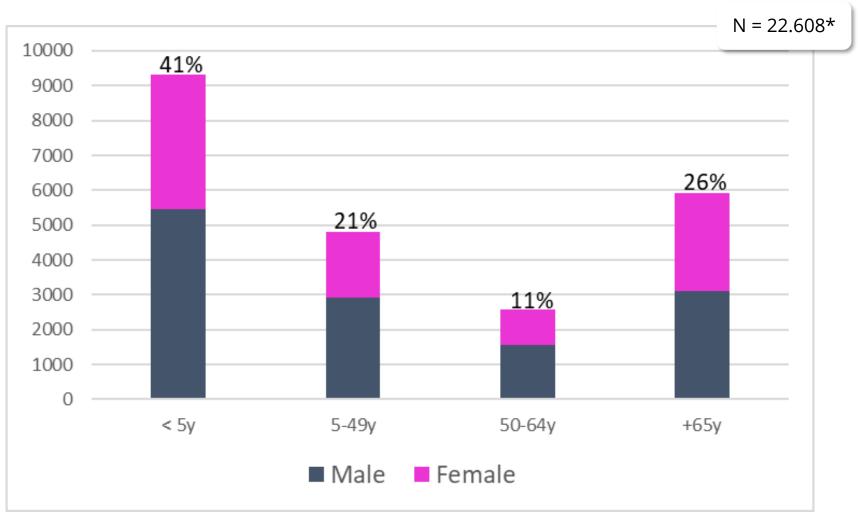





## 20 SITES IN 19 COUNTRIES PARTICIPATED IN THE GIHSN IN 2022\_23



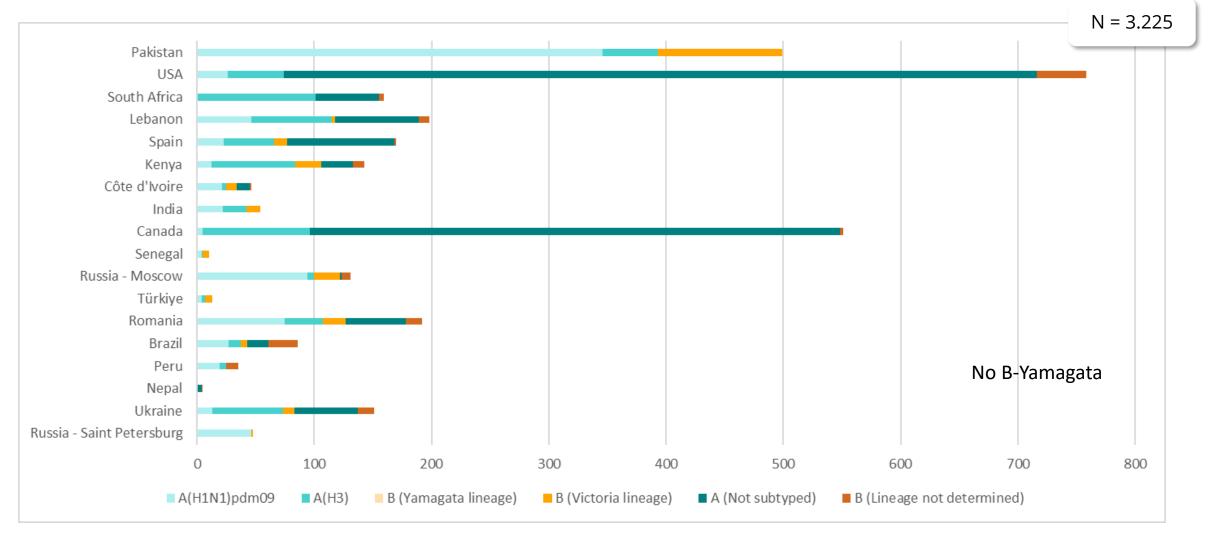
Network


### OVERALL NB OF PATIENTS ENROLLED AND POSITIVE CASES OF INFLUENZA, SARS-COV2, RSV AND ORV (2022-23) (#) (AS OF NOVEMBER 3RD, 2023)



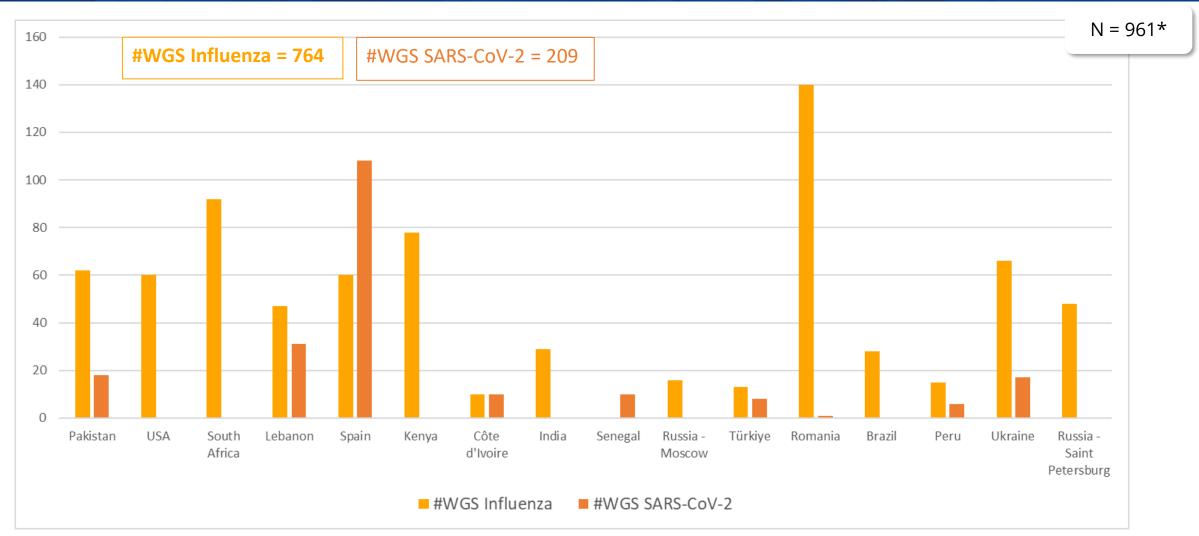


## DISTRIBUTION OF ENROLLED PATIENTS BY AGE GROUP AND SEX – ALL SITES (2022-23) (#) (AS OF NOVEMBER 3RD, 2023)






Global Influenza Hospital Surveillance Network


\*No age completed for 21 patients

### DISTRIBUTION OF LAB CONFIRMED INFLUENZA CASES BY VIRUS SUBTYPE AND LINEAGE (22-23) (#) (AS OF NOVEMBER 3RD, 2023)





## WGS BY SITE (2022\_23) (#) (AS OF NOVEMBER 3RD, 2023)





\*99 not yet in the GIHSN database

## **GIHSN reports provided to the WHO prior to the 2 VCM**



www.gihsn.org

GIHSN report of activity prior to the WHO Consultation on the Composition of Influenza Virus Vaccines for use in the 2023-2024 Northern Hemisphere Influenza Season.

GIHSN is collecting clinical and virological information from hospitalized cases through a network of sites located in different regions of the world (figure1). This combined clinical and virological surveillance allows the identification of viruses responsible for severe influenza. This severity is assessed by the oxygen requirement of cases registered by the sites. In this report, viruses detected and sequenced from cases requiring oxygen supplementation are identified, to determine if specific lineages or clades are associated with more frequent severe presentation.

For the 2022-2023 surveillance in GIHSN, influenza activity was detected earlier than usual, increasing rapidly in November in many Northern Hemisphere countries. Overall, influenza A (H3N2) has accounted for the majority of detections reported, followed by A(H1N1)pdm09 viruses. Fewer influenza B/Victoria lineage virus detections have been reported so far, but there are ongoing outbreaks observed in some countries. No B/Vamagata/16/88 viruses have been detected by the GIHSN.

This report is colliding the sequencing data from 11 sites (Türkiye (3), Spain (13), USA-NYC (3), Senegal (6), Russia-St Petersburg (48), Romania (25), South Africa (19), Pakistan (7), Ukraine (43), Lebanon (40) and India (19)). All 226 sequences, from hospitalized cases only, have been uploaded in the GISAID database with a GIHSN tag.

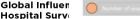

Specimens from Peru (38) were delivered to the sequencing lab in Lyon after February 1, 2023. These additional sequences will be shared to the community in a next update of this report.

Fig. 1 Map of the participating countries, between September 2022 and January 2023.





Network





Global influenza Hospital Surveillance Network

#### www.gihsn.org

GIHSN report of activity prior to the WHO Consultation on the Composition of Influenza Virus Vaccines for use in the 2024 Southern Hemisphere Influenza Season.

Report prepared the 14<sup>th</sup> of September 2023

#### 1 - Description of the network

GIHSN is collecting clinical and virological information from hospitalized cases through a network of sites (20) located in different regions of the world (figure1). This combined clinical and virological surveillance allows the identification of viruses responsible for severe influenza. This severity is assessed by the oxygen requirement of hospitalized cases registered by the sites. In this report, viruses detected and sequenced from cases requiring oxygen supplementation are identified, to determine if specific lineages or clades are associated with more frequent severe presentation, O2 requirement being used as a surrogate for severity.

#### Fig. 1 Map of the participating countries, Season 2022 - 2023.



During the 2022 -2023 surveillance (November 1<sup>st</sup>, 2022 up till now), GIHSN has collected data from 2789 influenza A cases (766 H1N1, 598 H3N2 and 1425 not subtyped), and 359 influenza B cases (226 Victoria lineage, 0 Yamagata lineage and 133 with no lineage characterization), among which 660 have been sequenced (whole genome sequencing) through NGS.

## **KEY VACCINE AND SEVERITY INDICATORS COLLECTED BY THE SITES (2022-2023)**

|                           |                 | Influenza vaccination for the current |           |           | Supplemental oxygen without          |           |           | ICU admission (at any time during |           |           |
|---------------------------|-----------------|---------------------------------------|-----------|-----------|--------------------------------------|-----------|-----------|-----------------------------------|-----------|-----------|
|                           |                 | season                                |           |           | mechanical ventilation               |           |           | hospitalization)                  |           |           |
|                           | Total #enrolled | both_influ_vac_current_season         |           |           | <pre>both_severity_supp_oxygen</pre> |           |           | both_icu_adm                      |           |           |
|                           |                 | % completed                           | % missing | % unknown | % completed                          | % missing | % unknown | % completed                       | % missing | % unknown |
| Kenya                     | 1694            | 100                                   | 0         | 0         | 100                                  | 0         | 0         | 100                               | 0         | 0         |
| Côte d'Ivoire             | 1482            | 100                                   | 0         | 0         | 100                                  | 0         | 4         | 100                               | 0         | 0         |
| Senegal                   | 632             | 100                                   | 0         | 40        | 100                                  | 0         | 39        | 100                               | 0         | 85        |
| South Africa              | 2336            | 100                                   | 0         | 0         | 100                                  | 0         | 1         | 100                               | 0         | 23        |
| India                     | 1207            | 100                                   | 0         | 0         | 100                                  | 0         | 0         | 100                               | 0         | 0         |
| Pakistan                  | 3295            | 100                                   | 0         | 0         | 100                                  | 0         | 33        | 100                               | 0         | 0         |
| Nepal                     | 243             | 100                                   | 0         | 0         | 100                                  | 0         | 0         | 100                               | 0         | 0         |
| Türkiye                   | 549             | 100                                   | 0         | 1         | 100                                  | 0         | 1         | 100                               | 0         | 2         |
| Lebanon                   | 1896            | 100                                   | 0         | 0         | 100                                  | 0         | 0         | 100                               | 0         | 0         |
| Russia - Saint Petersburg | 48              | 100                                   | 0         | 0         | 100                                  | 0         | 0         | 100                               | 0         | 0         |
| Russia - Moscow           | 558             | 100                                   | 0         | 0         | 0                                    | 100*      | 0         | 100                               | 0         | 0         |
| Ukraine                   | 244             | 100                                   | 0         | 0         | 100                                  | 0         | 0         | 100                               | 0         | 0         |
| Spain                     | 1878            | 100                                   | 0         | 0         | 100                                  | 0         | 100*      | 100                               | 0         | 1         |
| Romania                   | 540             | 100                                   | 0         | 1         | 100                                  | 0         | 0         | 100                               | 0         | 0         |
| Canada                    | 869             | 100                                   | 0         | 32        | 100                                  | 0         | 1         | 100                               | 0         | 0         |
| USA                       | 3128            | 100                                   | 0         | 0         | 100                                  | 0         | 0         | 100                               | 0         | 0         |
| Brazil                    | 496             | 99                                    | 1         | 0         | 99                                   | 1         | 0         | 96                                | 4         | 0         |
| Peru                      | 422             | 100                                   | 0         | 1         | 100                                  | 0         | 0         | 100                               | 0         | 0         |



## Focus on the GIHSN report provided prior to the SH VCM



www.gihsn.org

GIHSN report of activity prior to the WHO Consultation on the Composition of Influenza Virus Vaccines for use in the 2024 Southern Hemisphere Influenza Season.

Report prepared the 14<sup>th</sup> of September 2023

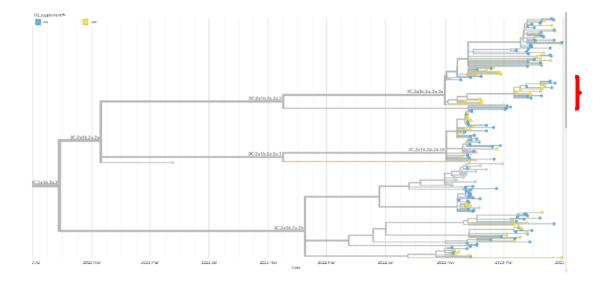
#### 1 - Description of the network

GIHSN is collecting clinical and virological information from hospitalized cases through a network of sites (20) located in different regions of the world (figure1). This combined clinical and virological surveillance allows the identification of viruses responsible for severe influenza. This severity is assessed by the oxygen requirement of hospitalized cases registered by the sites. In this report, viruses detected and sequenced from cases requiring oxygen supplementation are identified, to determine if specific lineages or clades are associated with more frequent severe presentation, 02 requirement being used as a surrogate for severity.

#### Fig. 1 Map of the participating countries, Season 2022 - 2023.

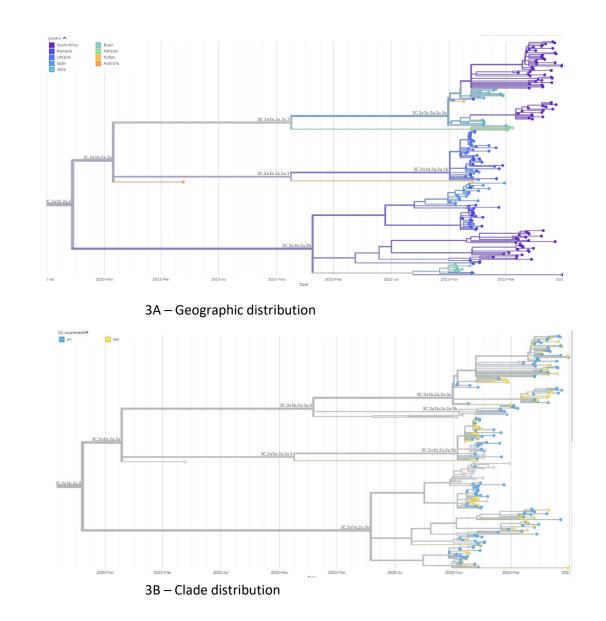


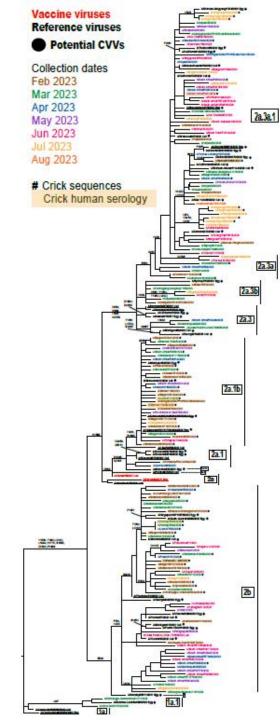
During the 2022 -2023 surveillance (November 1<sup>st</sup>, 2022 up till now), GIHSN has collected data from 2789 influenza A cases (766 H1N1, 598 H3N2 and 1425 not subtyped), and 359 influenza B cases (226 Victoria lineage, 0 Yamagata lineage and 133 with no lineage characterization), among which 660 have been sequenced (whole genome sequencing) through NGS.

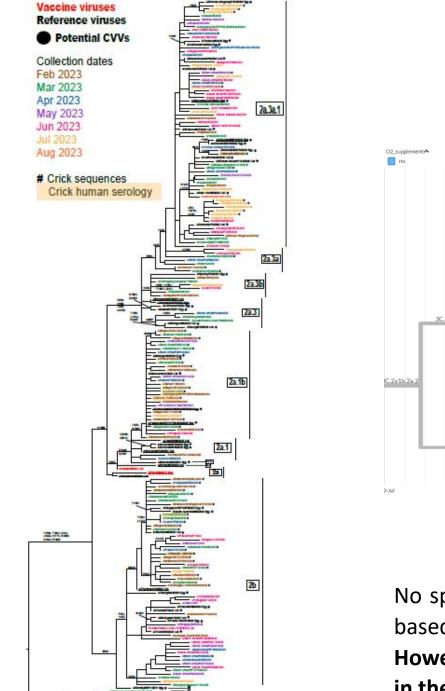


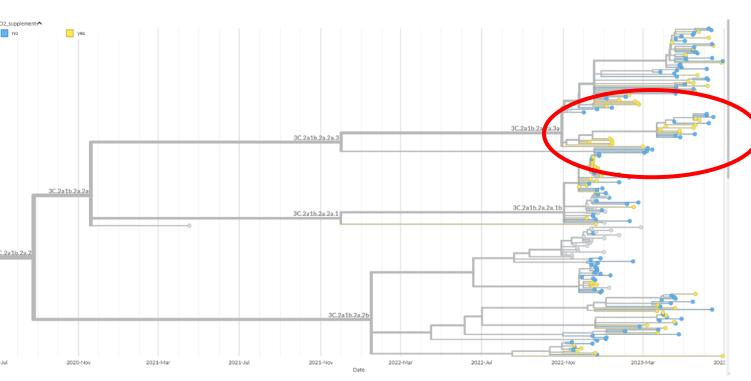






#### www.gihsn.org


No specific lineage or clade could be strongly associated with severity based of oxygen requirement, this being observed with all A lineages. However, this O2 requirement seems to be more frequently reported in the 2a.2a.3a HA lineage (Figure 3C).





#### 3C – Oxygen supplementation





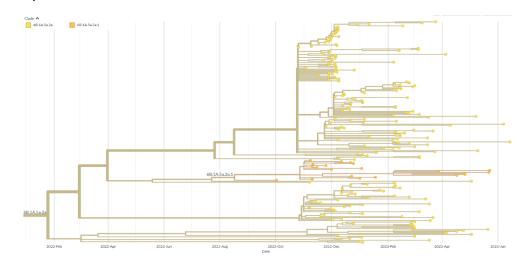




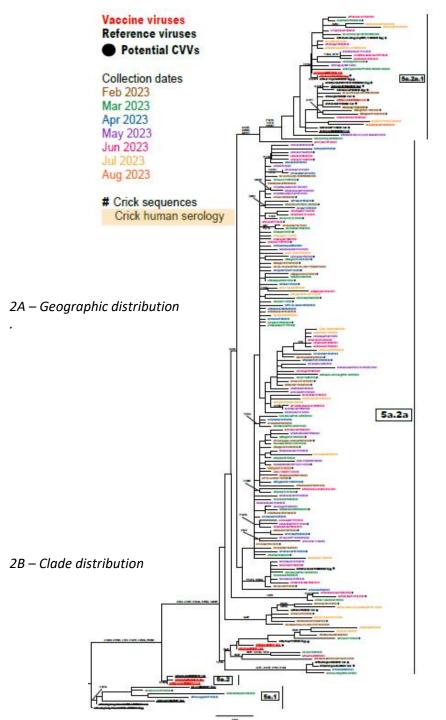


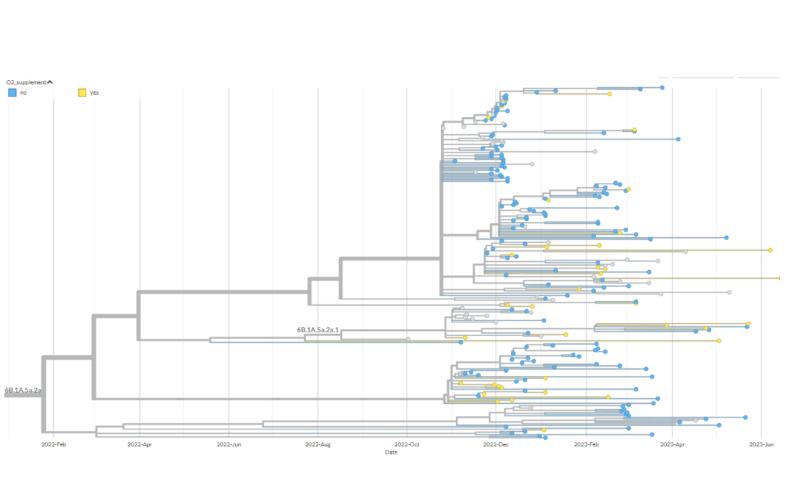
H3N2

3C – Oxygen supplementation


No specific lineage or clade could be strongly associated with severity based of oxygen requirement, this being observed with all A lineages. **However, this O2 requirement seems to be more frequently reported in the 2a.2a.3a HA lineage**.

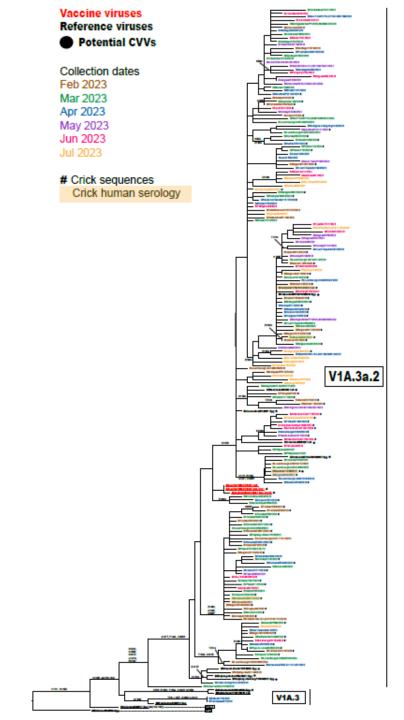


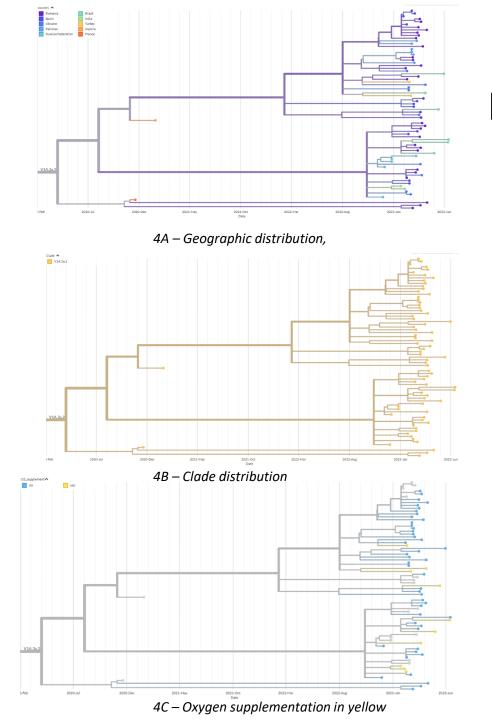

## H1N1pdm09




2A – Geographic distribution




2B – Clade distribution






2C – Cases requiring Oxygen supplementation.

## H1N1pdm09





## **B** Victoria

Geographic diversity of investigated cases Standardized clinical data set for all patients of all sites Increased sequencing capacity with standardized analysis (capacity building)

In 2023, a memorandum of understanding has been signed between GIHSN and WHO

Further ongoing analysis to confirm the possible increased severity of clade 3c.2a1b.2a.2a.3a



# **THANK YOU!**

contact@gihsn.org

www.gihsn.org

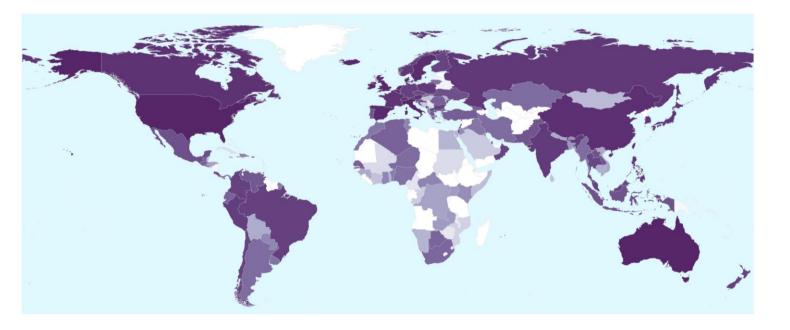


Global Influenza Hospital Surveillance Network

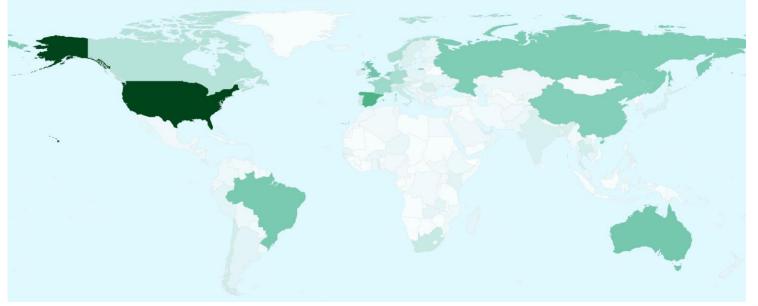


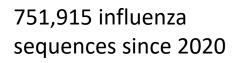
## GIHSN 11TH ANNUAL MEETING, 16-17 NOVEMBER 2023

### **GISAID AND GIHSN**


Sebastian MAURER-STROH, GISAID




Foundation for Influenza Epidemiology


# GISAID analytics and display updates





# 16,217,407 SARS-CoV-2 sequences since 2020





(2,224,752 sequences in total)



## The secret sauce



One platform, one ecosystem



### **TRUST** - GISAID Data Sharing Principles

- **Data Providers** grant **Data Users** a license for the use of their Data, providing legal certainty for use in research and publications, and for the development, testing and dissemination of interventions such as vaccines, diagnostics and therapeutics.
- Access to GISAID is **free-of-charge** and **open to everyone** provided they identify themselves in order to foster collaboration and to permit an effective oversight to uphold the sharing principles enshrined;
- The guiding principle for those using Data in publications is the **need to** acknowledge the contribution of Data Providers;
- While all the Data are publicly accessible, Data Providers do not forfeit their Rights to the Data they share through GISAID.

## **QUALITY** - rich meta-data and curation

| Virus detail               |                                                                                                                                   | Single uploa |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|
| Virus name*                |                                                                                                                                   |              |
|                            | hCoV-19/Country/Identifier/2022                                                                                                   |              |
| Accession ID               |                                                                                                                                   |              |
| Туре                       | betacoronavirus                                                                                                                   |              |
| Passage details/history*   |                                                                                                                                   |              |
|                            | Example: Original, Vero                                                                                                           |              |
| Sample information         |                                                                                                                                   | -            |
| Collection date*           | ♥                                                                                                                                 | Single uploa |
|                            | Example: 2021-03-27, 2021-03 (collection in March, specific day unknown), 2021 (collection in 2021, month and                     | Wastewate    |
| Location*                  |                                                                                                                                   |              |
| Additional location        | Continent / Country or Territory / Region                                                                                         |              |
| information                | Travel history; Residence; Cruise ship;                                                                                           |              |
| Host*                      | Human, Environment, Canis Iupus 🗸                                                                                                 |              |
| Additional host            |                                                                                                                                   |              |
| information                | Example: Underlying health conditions; other host relevant characteristics                                                        |              |
| Outbreak Detail            |                                                                                                                                   |              |
|                            | Example: Date, Place, Family cluster                                                                                              |              |
| Sampling strategy          | Baseline surveillance; Active surveillance; Clinical trial;                                                                       |              |
| Gender*                    | Male, Female, or unknown                                                                                                          |              |
| Patient age*               |                                                                                                                                   |              |
|                            | Example: 65, 7 months, or unknown                                                                                                 |              |
| Patient status*            | Hospitalized, Released, Live, Dec 🛩                                                                                               |              |
| Specimen source            | Wastewater surveillance, Sputum, Alveolar lavage fluid, Oropharyngeal swab, Mid-Turbinate swab, Nasopharyngeal swab, Blood, Trach | eal swa 🗸    |
| Last vaccinated            |                                                                                                                                   |              |
|                            | provide details if applicable                                                                                                     |              |
| Treatment                  |                                                                                                                                   |              |
| Conversing technology*     | Example: Include drug name, dosage                                                                                                |              |
| Sequencing technology*     | Example: Illumina Miseq, Sanger, Nanopore MinION, Ion Torrent, etc.                                                               |              |
| Assembly method            |                                                                                                                                   |              |
|                            | Example: CLC Genomics Workbench 12, Geneious 10.2.4, SPAdes/MEGAHIT v1.2.9, UGENE v. 33, etc.                                     |              |
| Coverage                   |                                                                                                                                   |              |
|                            | Example: 70x, 1,000x, 10,000x (average)                                                                                           |              |
| Clinical trial information | on                                                                                                                                |              |
| Clinical trial ID          |                                                                                                                                   |              |

Example: NCT04470427

Example: ModernaTX, Inc

Sponsor

URL



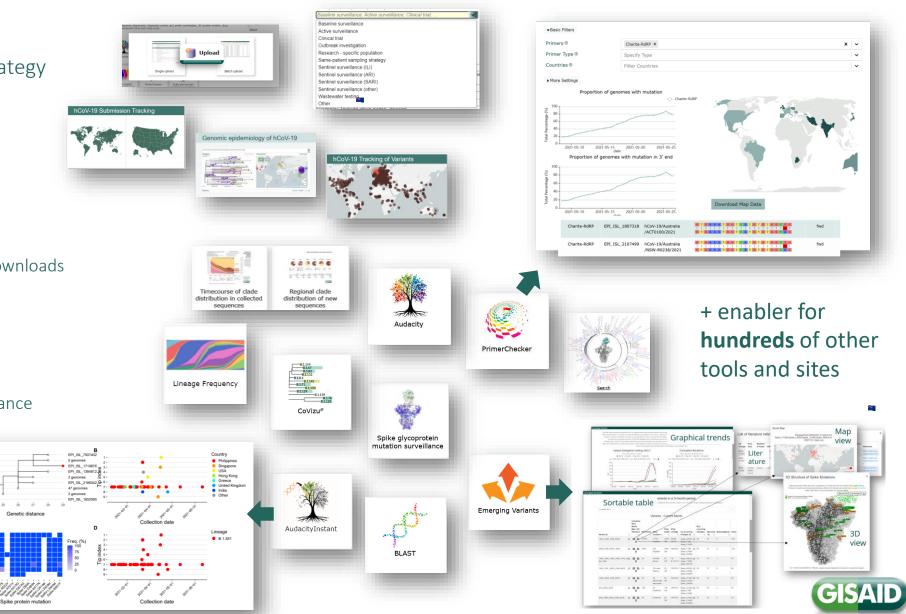
plus CLI (command line interface)

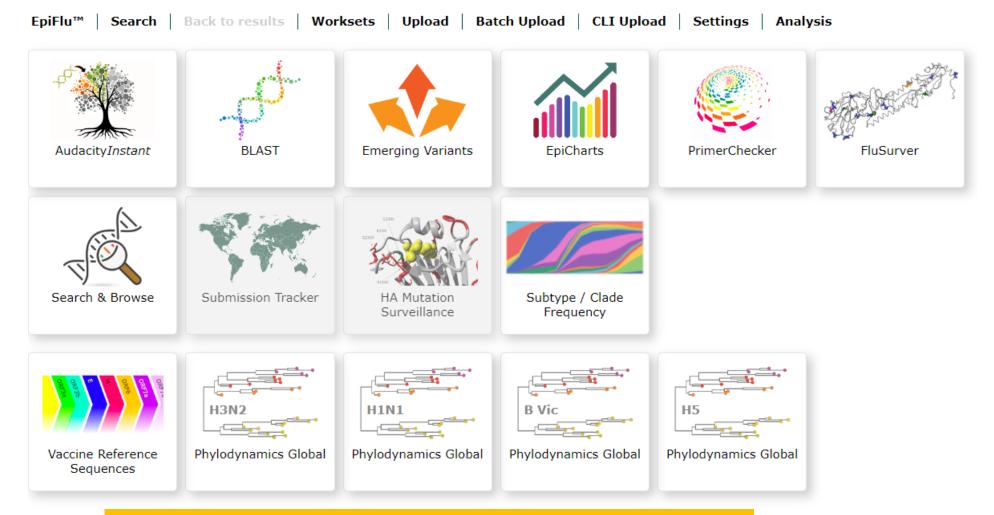
| stian@COMHOME /imms/of/serv/                                    | selection |         |                       |         |         |      |            |         |         |         |                            |
|-----------------------------------------------------------------|-----------|---------|-----------------------|---------|---------|------|------------|---------|---------|---------|----------------------------|
| virus gissid_epi_isl<br>country_exposure<br>ineage 615AID_clade | divisio   | -       | lon<br>are<br>submitt | segment | length  | host | 101        | DEX     | Nextstr | sin cla | region_e<br>Se<br>ubmitted |
| _of_sequencing<br>stan/1988/2956/2828                           |           |         |                       |         |         |      |            |         |         |         |                            |
| Asia Afghanistan                                                |           |         | 807070                |         |         |      |            | 20A     | 0.1.1   | Argnan  | Bundezow                   |
| Stute of Picrobiology<br>2001-02-10                             |           |         |                       |         |         |      | Antwerper  |         |         |         |                            |
| stan/134847958/2020                                             |           | EPT IS  | 1000910               |         | 2020-05 |      |            |         |         |         |                            |
| Asia Afghanistan                                                | Afghand   | Esten   | ER10R0                |         | Human   |      |            |         | 8.1.36  |         | Bundeswe                   |
| itute of Microbiology<br>2 2021-02-15                           |           |         | itute of              |         |         |      |            |         |         | /ww.gi  |                            |
| stan/13687868/2828                                              |           |         |                       |         |         |      | Asia       |         |         |         |                            |
| Asia Afghanistan                                                | Arghant   |         | genome                |         | Huttan  |      |            |         |         |         | Bundetwe                   |
| itute of Microbiology<br>> 2021-02-15                           |           |         |                       |         |         |      |            |         |         |         |                            |
| stan/19887962/2028                                              |           | 691 151 | 1001000               |         | 2020-06 |      |            | Afghand | stan    | Afghas  |                            |
| Asia Afghanistan                                                |           |         | ganone                |         |         |      |            |         |         |         |                            |
| Stute of Hicrobiology<br>2022-02-15                             |           |         |                       |         |         |      |            |         |         |         |                            |
| star/19887964/2020                                              |           | OPT IS  | 1001001               |         | 2020-05 |      |            | Afghani | stan    | Afghan  |                            |
| Asia Afghanistan                                                |           |         | ganore                |         |         |      |            | 284     |         |         |                            |
| itute of Microbiology<br>2021-02-15                             |           |         |                       |         |         |      | Antiverper |         |         |         |                            |
| stan/134587965/2828                                             |           |         |                       |         |         |      | Asia       |         |         | Afghan  | istan                      |
| Asia Afghanistan                                                | 1-Fighand |         | genome                |         | Human   |      |            |         |         |         | Bundeswe                   |
| itute of Microbiology<br>? 2021-02-15                           |           |         |                       |         |         |      |            |         |         |         |                            |
| stan/134887968/2020                                             |           | 691,151 | _1001003              |         | 2828+85 |      |            | Afghard | stan .  | Afghan  | istan                      |



All timezones covered

Also, special fields for: Sequencing technology, Sampling Strategy Travel History, Clinical Trial info and Wastewater

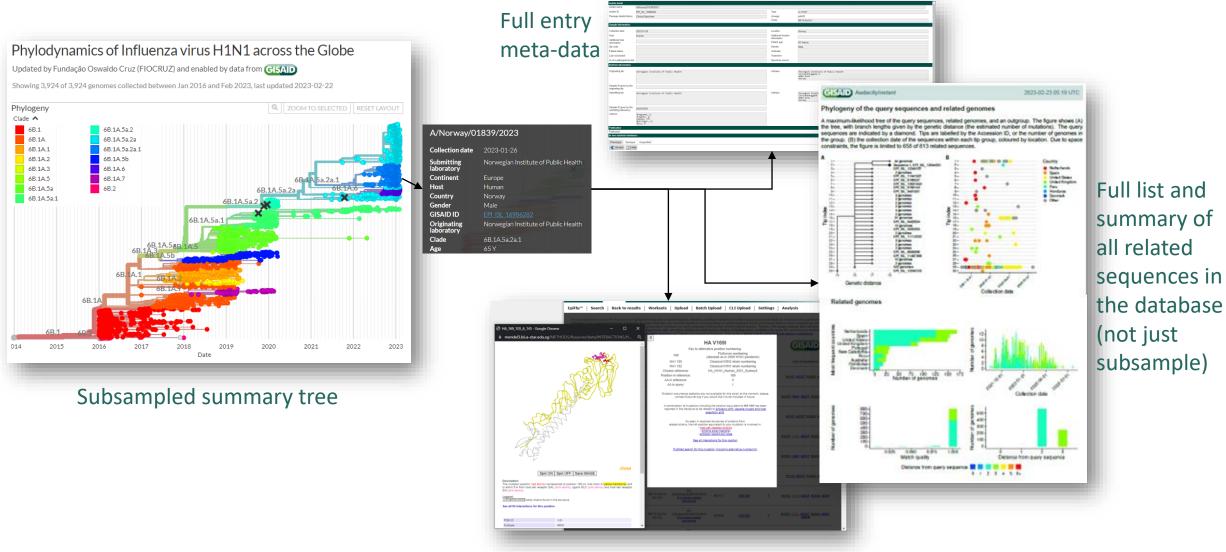




Request review 📝

Contact Submitter 🛛 🛃 Submit for Review

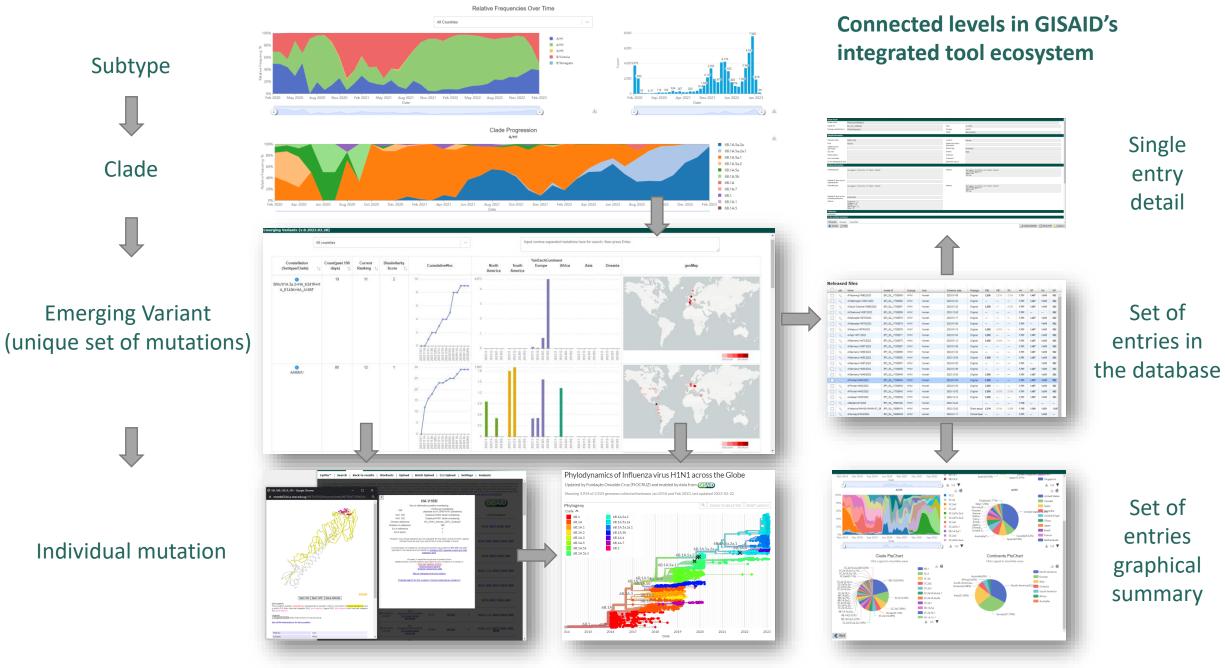
## **INSIGHTS** - GISAID tool ecosystem

- Submission/Curation
  - New fields: sampling strategy
- Tools on the outside:
  - Submission tracker map
  - Genomic epidemiology
  - Variant tracking
- Tools on the inside:
  - Reporting:
    - Analysis reports and downloads
    - Audacity
    - PrimerChecker
    - EpiCoV search
  - New variants:
    - CoVsurver
    - Spike mutation surveillance
    - Emerging Variants
    - CoVizu
  - Contact Tracing:
    - Audacity Instant
    - BLAST

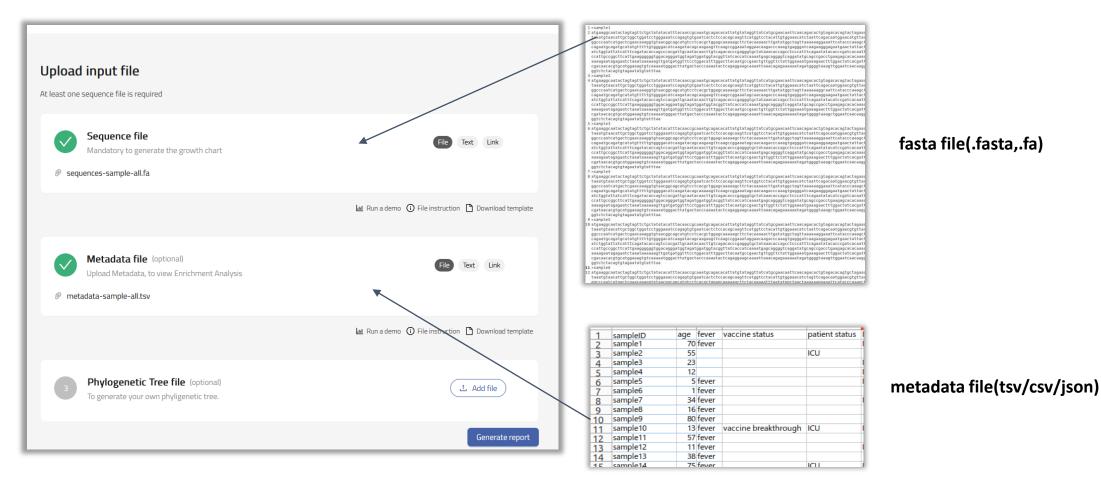





The same tools new in EpiCoV have been implemented in EpiFlu in order to automatically annotate incoming sequences with clade info as well as identification of new variants via mutation constellations and annotation of effects of new mutations.

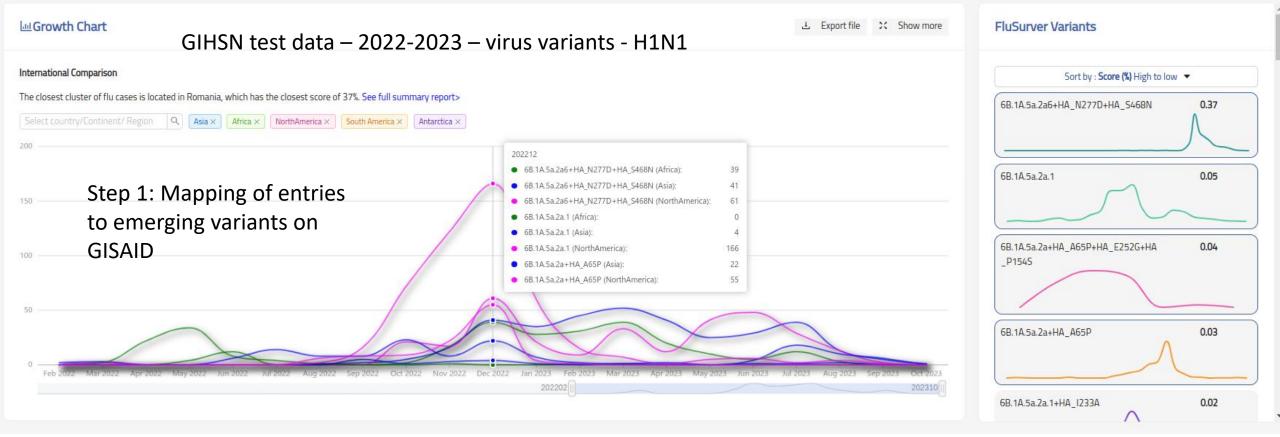


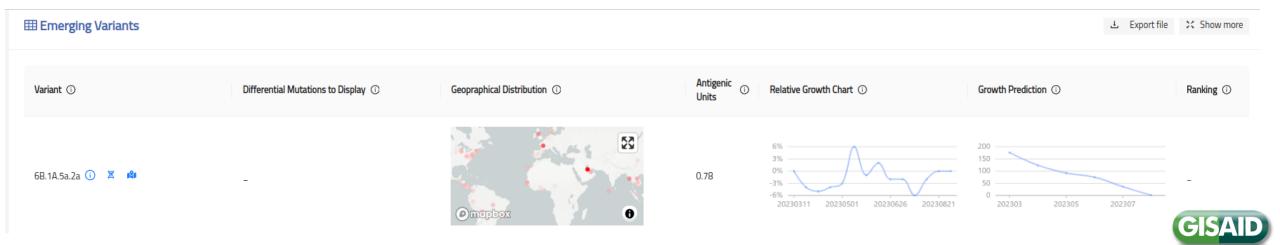

# Seamless integration of tools inside the GISAID platform (log-in once) provides you comprehensive views from multiple angles and all info in one place




Full mutation phenotype annotation

#### A scale-free view of virus evolution





## GISAID FluCluster-AI – map clinical data to emerging virus variants



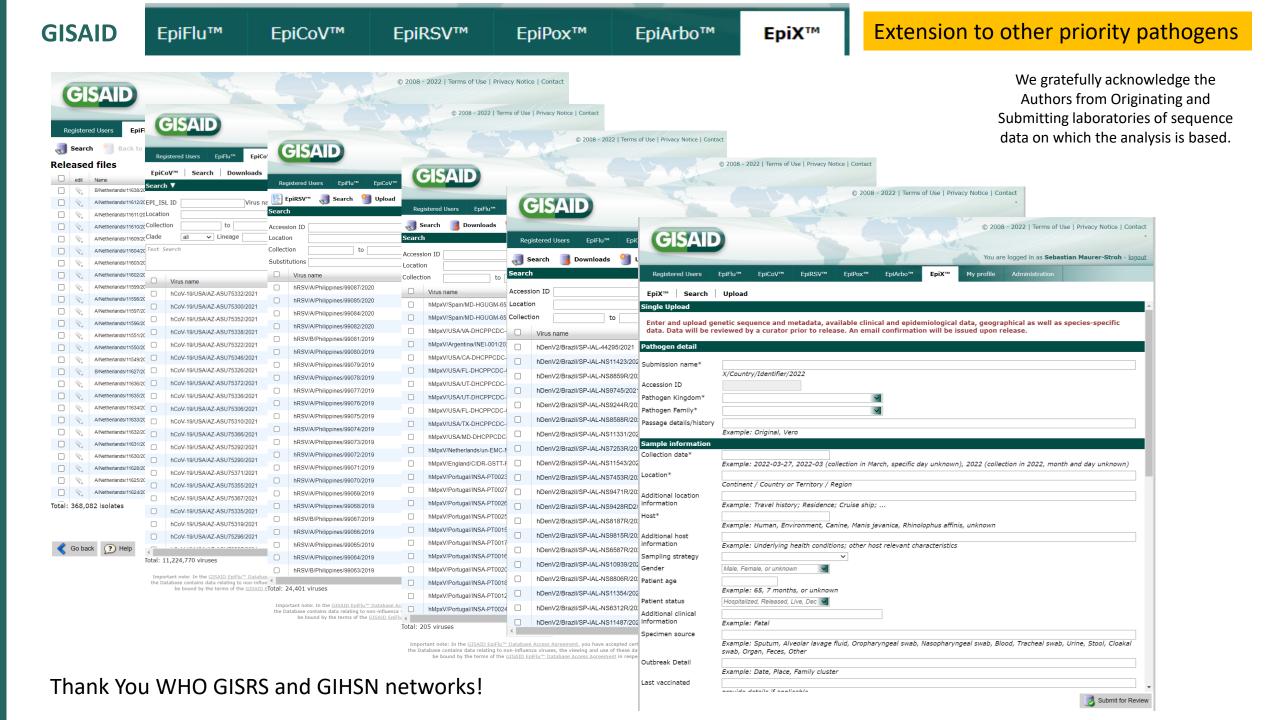
- User uploads sequencing fasta files or GISAID accessions and metadata files(in tsv/csv/json formats) in the landing page.
- Clinical data never leaves the user's computer, analysis happens in local browser







#### III Enrichment Analysis


FluCluster 6B.1A.5a.2a is associated with higher values of ICU admission (Odds Ratio: 0.56), indicating that this FluCluster has a higher ... more

| Constellation        | Count 🗘 | Age 🍦 | Fever 🍦 | Malaise<br>fatigue ≑<br>lethargy | Headache ≑ | Myalgia<br>muscle<br>ache \$<br>body<br>ache | Cough ≑ | Sore throat | Shortness<br>of breath<br>difficult<br>breathing | Wheezing ≑ | Nasal<br>congestion<br>runny<br>nose | Vaccination<br>for the<br>current<br>season | Vaccination<br>in the<br>preceding<br>season | Vaccination<br>for the<br>current or<br>preceding<br>seasons | ICU<br>admission | High<br>dependence<br>unit | Mechanical ventilation | Death while<br>hospitalized | Aggregate<br>severe \$<br>symptoms |
|----------------------|---------|-------|---------|----------------------------------|------------|----------------------------------------------|---------|-------------|--------------------------------------------------|------------|--------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------|----------------------------|------------------------|-----------------------------|------------------------------------|
| 6B.1A.5a.2a6+HA_N27  | 88      | 0.77  |         |                                  |            | 1.08                                         |         |             |                                                  |            |                                      | 0.99                                        |                                              |                                                              | 0.86             |                            |                        |                             | 1.02                               |
| 6B.1A.5a.2a.1        | 11      | 1.94  |         |                                  |            |                                              | 0.71    |             |                                                  |            |                                      | 0.92                                        |                                              | 0.86                                                         | 0.87             |                            |                        |                             | 0.95                               |
| 6B.1A.5a.2a+HA_A65P  | 9       | 0.97  |         |                                  |            |                                              |         |             |                                                  |            |                                      | 1.13                                        |                                              | 0.97                                                         | 0.87             |                            |                        |                             | 0.69                               |
| 6B.1A.5a.2a+HA_A65P  | 7       | 0.97  | 1.05    |                                  |            | 0.79                                         |         | 1.23        |                                                  | 1.16       |                                      | 0.92                                        | 1.28                                         | 1.26                                                         | 1.26             | 1.23                       |                        | 0.97                        | 1.41                               |
| 6B.1A.5a.2a.1+HA_I23 | 5       | 1.24  |         |                                  |            |                                              |         |             |                                                  |            |                                      | 0.92                                        |                                              | 0.79                                                         | 0.87             |                            |                        |                             | 0.83                               |
| 6B.1A.5a.2a+HA_A65P  | 4       | 0.51  | 1.13    | 1.08                             | 0.74       |                                              | 0.99    |             |                                                  | 0.73       |                                      | 0.92                                        |                                              | 0.79                                                         | 0.87             | 0.77                       |                        | 0.98                        | 0.69                               |
| 6B.1A.5a.2a          | 4       | 1.33  | 0.84    |                                  | 1.31       | 0.8                                          | 0.99    | 1.17        | 1.1                                              |            |                                      | 0.92                                        | 1.01                                         | 0.99                                                         | 1.55             | 0.77                       | 0.97                   | 0.98                        | 1.22                               |
| 6B.1A.5a.2a.1+HA_D29 | 2       | 1.38  |         |                                  |            |                                              |         |             | 1.1                                              |            |                                      | 0.92                                        |                                              | 0.79                                                         | 1.32             | 0.78                       | 1.46                   |                             | 1.05                               |
| 6B.1A.5a.2a.1+HA_K71 | 2       | 1.85  | 0.85    |                                  | 1.12       | 0.8                                          | 1.13    | 1.17        |                                                  |            |                                      | 0.92                                        |                                              | 0.79                                                         | 0.88             |                            | 1.46                   |                             | 1.4                                |
| 6B.1A.5a.2a+HA_D502  | 2       | 0.46  | 1.13    |                                  | 1.12       |                                              |         |             |                                                  | 1.48       |                                      | 0.92                                        | 1.62                                         | 1.6                                                          | 0.88             |                            |                        |                             | 1.4                                |
|                      |         |       |         |                                  |            |                                              |         |             |                                                  |            |                                      |                                             |                                              |                                                              |                  |                            | < 1                    | 234                         | 5 >                                |

Step 2: Odds ratio analysis of clinical variables for enrichment or depletion association with the emerging variants

#### III Enrichment Analysis

| Constellation                     | Count ¢ | Age ≑ | Fever \$ | Malaise<br>fatigue \$<br>lethargy | Headache 🤤 | Myalgia<br>muscle<br>ache ¢<br>body<br>ache | Cough ≑ | Sore | Shortness<br>of breath<br>difficult<br>breathing | Wheezing 👙 | Nasal<br>congestion<br>runny<br>nose | Vaccination<br>for the<br>current<br>season | Vaccination<br>in the<br>preceding<br>season | Vaccination<br>for the<br>current or<br>preceding<br>seasons | ICU<br>admission | High<br>dependence<br>unit | Mechanical<br>ventilation | Death while<br>hospitalized | Aggregate<br>severe<br>symptoms |
|-----------------------------------|---------|-------|----------|-----------------------------------|------------|---------------------------------------------|---------|------|--------------------------------------------------|------------|--------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------|----------------------------|---------------------------|-----------------------------|---------------------------------|
| H1N1_6B.1A.5a.2a6+HA_N277D+HA_S4  | 88      |       |          |                                   |            |                                             |         |      |                                                  |            |                                      | 1.01                                        |                                              | 1.05                                                         |                  |                            |                           |                             | 1.01                            |
| H3N2_3C.2a1b.2a.2a.3a.1           | 39      |       |          |                                   | 0.82       |                                             |         |      |                                                  |            | 0.83                                 | 0.98                                        |                                              | 0.9                                                          |                  | 1.28                       |                           |                             | 1.19                            |
| H3N2_3C.2a1b.2a.2a.1b+HA_T26M     | 31      | 0.6   | 1.14     | 1.24                              | 1.1        | 0.86                                        | 1.14    | 1.27 |                                                  | 0.83       | 1.03                                 | 0.93                                        |                                              | 0.85                                                         | 0.91             | 0.73                       | 0.97                      | 0.98                        | 0.68                            |
| H3N2_3C.2a1b.2a.2b                | 28      | 0.86  |          |                                   |            |                                             |         | 0.93 |                                                  | 0.89       | 0.96                                 | 0.93                                        |                                              | 0.89                                                         | 1.01             | 0.73                       | 1.04                      | 0.98                        | 0.76                            |
| H3N2_3C.2a1b.2a.2a.1b3+HA_D120G+H | 23      | 1.23  | 0.99     | 1.17                              | 0.99       | 0.94                                        | 1.08    | 1.1  | 1.08                                             |            | 0.88                                 | 1.15                                        | 1.02                                         | 1.05                                                         | 0.95             | 1                          | 1.01                      | 1.07                        | 0.93                            |
| H3N2_3C.2a1b.2a.2b+HA_R49Q        | 22      | 2.3   |          |                                   |            |                                             |         |      | 1.09                                             |            | 0.85                                 | 1.02                                        |                                              | 1.02                                                         | 0.91             |                            |                           |                             | 1.21                            |
| H1N1_6B.1A.5a.2a.1                | 11      | 2.21  |          |                                   |            |                                             |         | 1.01 | 1.02                                             |            | 0.92                                 | 0.94                                        |                                              | 0.94                                                         | 0.91             |                            |                           |                             | 0.95                            |
| H3N2_3C.2a1b.2a.2b+HA_1258M       | 11      | 0.23  |          |                                   |            | 0.83                                        |         | 0.79 |                                                  |            | 0.86                                 | 0.94                                        |                                              | 0.86                                                         | 0.91             | 1.5                        | 1.24                      |                             | 1.4                             |
| Bvic_V1A.3a.2                     | 9       | 1.55  |          | 1.02                              |            | 1.12                                        |         | 1.23 |                                                  |            | 0.97                                 | 0.94                                        |                                              | 0.86                                                         | 1.22             | 0.74                       |                           |                             | 0.93                            |
| H1N1_6B.1A.5a.2a+HA_A65P+HA_E252  | 9       | 1.14  |          |                                   |            |                                             |         |      |                                                  |            | 1.21                                 | 1.15                                        |                                              | 1.05                                                         | 0.91             |                            |                           | 0.98                        | 0.69                            |
|                                   |         |       |          |                                   |            |                                             |         |      |                                                  |            |                                      |                                             |                                              | <                                                            | 1 2              | 3 4                        | 5 ••• 10                  | ) > [1                      | 0/page ∨                        |





### GIHSN 11TH ANNUAL MEETING, 16-17 NOVEMBER 2023 LEVERAGING ON THE GIHSN DATABASE & NETWORK

#### Moderator: Sandra S CHAVES, Foundation for Influenza Epidemiology



Foundation for Influenza Epidemiology -Miranda DELAHOY, CDC, Atlanta, USA -Cécile VIBOUD & Chelsea HANSEN, NIH, USA -Bronke BOUDEWIJNS, Nivel, The Netherlands



#### ANNUAL MEETING, 16 NOVEMBER 2023

#### **RESEARCH UPDATE**

#### Sandra CHAVES, Foundation for Influenza Epidemiology



Foundation for Influenza Epidemiology Sous l'égide de

Fondation de France

## **RECENT PUBLICATIONS**

The Journal of Infectious Diseases MAJOR ARTICLE



Predictors of Severity of Influenza-Related Hospitalizations: Results From the Global Influenza Hospital Surveillance Network (GIHSN)

Lily E. Cohen,<sup>1,2,0</sup> Chelsea L. Hansen,<sup>3,4,5</sup> Melissa K. Andrew,<sup>6</sup> Shelly A. McNeil,<sup>6</sup> Philippe Vanhems,<sup>7</sup> Jan Kyncl,<sup>8,9</sup> Javier Díez Domingo,<sup>10</sup> Tao Zhang,<sup>11</sup> Ghassan Dbaibo.<sup>12</sup> Victor Alberto Laguna-Torres.<sup>13</sup> Anca Draganescu.<sup>14</sup> Elsa Baumeister.<sup>15</sup> Doris Gomez.<sup>16</sup> Sonia M. Raboni.<sup>17</sup> Heloisa I. G. Giamberardino.<sup>17</sup> Marta C. Nunes,<sup>18,19</sup> Elena Burtseva,<sup>20</sup> Anna Sominina,<sup>21</sup> Snežana Medić,<sup>22,23</sup> Daouda Coulibaly,<sup>24</sup> Afif Ben Salah,<sup>25,26</sup> Nancy A Otieno,<sup>27</sup> Parvaiz A. Koul,<sup>28</sup> Serhat Unal,<sup>29,30</sup> Mine Durusu Tanriover,<sup>30,31</sup> Marie Mazur,<sup>1</sup> Joseph Bresee,<sup>1</sup> Cecile Viboud,<sup>3</sup> and Sandra S. Chaves<sup>32</sup>

Journal of Clinical Virology 152 (2022) 105184

Contents lists available at ScienceDirect

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Clinical and phylogenetic influenza dynamics for the 2019-20 season in the global influenza hospital surveillance network (GIHSN) - Pilot study

Grégory Quéromès<sup>a</sup>, Emilie Frobert<sup>a,b</sup>, Elena Burtseva<sup>c</sup>, Anca Drăgănescu<sup>d</sup>, Paravaiz A. Koul<sup>e</sup>, Andrey Komissarov<sup>f</sup>, V. Alberto Laguna-Torres<sup>8</sup>, Jason Leblanc<sup>h</sup>, F-Xavier López-Labrador<sup>i,j</sup>, Snežana Medić<sup>k,1</sup>, Alla Mironenko<sup>m</sup>, Nancy A. Otieno<sup>n</sup>, Guillermo M. Ruiz-Palacios<sup>o</sup>, Tanriover MD<sup>p,q</sup>, NGS team - Lyon<sup>a,1</sup>, GIHSN collaborators<sup>a,2</sup>, Laurence Josset<sup>a,b</sup>, Bruno Lina b, r, \*



**Open Forum Infectious Diseases** 



Age Differences in Comorbidities, Presenting Symptoms, and Outcomes of Influenza Illness Requiring Hospitalization: A Worldwide Perspective From the Global Influenza Hospital Surveillance Network

Melissa K. Andrew, <sup>1,0</sup> Henrique Pott, <sup>1,2</sup> Lisa Staadegaard, <sup>3,0</sup> John Paget,<sup>3</sup> Sandra S. Chaves,<sup>4</sup> Justin R. Ortiz,<sup>5</sup> John McCauley,<sup>6</sup> Joseph Bresee, <sup>7</sup> Marta C. Nunes,<sup>8</sup> Elsa Baumeister,<sup>9</sup> Sonia Mara Raboni,<sup>10</sup> Heloisa I. G. Giamberardino,<sup>11</sup> Shelly A. McNeil,<sup>1</sup> Doris Gomez,<sup>12</sup> Tao Zhang,<sup>12</sup> Philippe Vanhems,<sup>14</sup> Parvaiz A. Koul,<sup>15</sup> Daouda Coulibaly,<sup>16</sup> Nancy A. Otieno,<sup>17</sup> Ghassan Dbaibo,<sup>18</sup> Maria Lourdes Guerrero Almeida,<sup>19</sup> Victor Alberto Laguna-Torres,<sup>20</sup> Anca Cristina Drăgănescu,<sup>21</sup> Elena Burtseva,<sup>22</sup> Anna Sominina,<sup>23</sup> Daria Danilenko.<sup>23</sup> Snežana Medić.<sup>24,25</sup> Javier Diez-Domingo,<sup>26</sup> and Bruno Lina,<sup>27</sup> on behalf of GIHSN Investigators

#### Microbiology and Immunology

#### ORIGINAL ARTICLE 6 Free Access

#### The association of breastfeeding and other factors on respiratory virus positivity and severity in hospitalized children

Laura Holtman Ferreira, Breno Gonçalves da Silva, Heloísa Ihle Giamberardino, Ana Paula Pacheco, Luciane Aparecida Pereira, Gustavo Genelhoud, Ricardo Rasmussen Petterle, Sonia Mara Raboni 🗙

First published: 15 February 2022 | https://doi.org/10.1111/1348-0421.12969

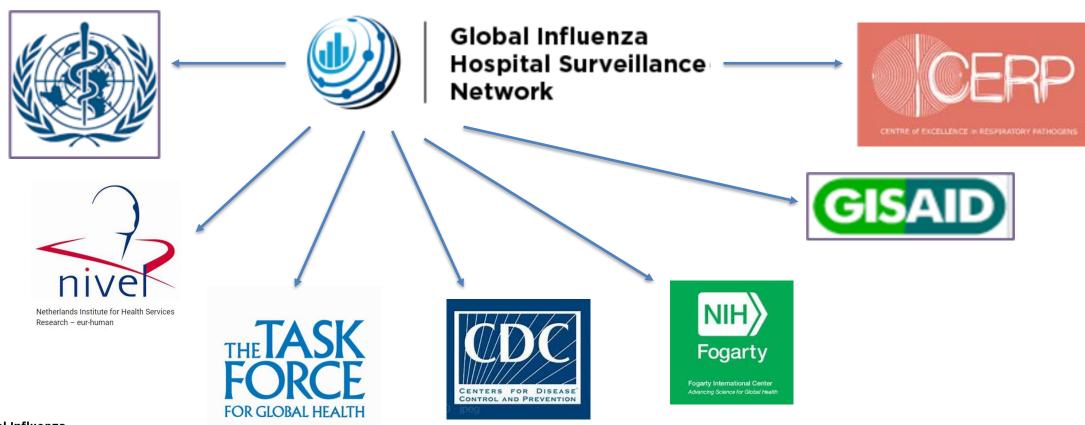


## **RESEARCH GRANT**

In 2021 the FIE started to support analytical and research projects leveraging the GIHSN platform

- Categories: Novel analysis of existing data, use of stored respiratory specimens for pathogen discovery or other relevant studies, others
- Support: Grants
- Process: Proposals to be technically approved by ISC and sites and endorsed by the EC




## **RESEARCH PROJECTS SUPPORTED BY FIE**

### **Research projects validated by the EC (in March 2022)**

| Title                                                                                                                                                                     | Leading<br>author                  | Status                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------|
| Experience of older adults hospitalized with influenza<br>and acute respiratory illness in relation to function in<br>Activities of Daily Living: a report from the GIHSN | M K Andrew                         | Awaiting request for data                                                                 |
| GIHSN Severity Scale (GIHSN SevScale) to categorize<br>hospitalizations across the network based on broad<br>severity parameters to be linked with WGS data               | J Paget<br>B Boudewijns<br>(Nivel) | Finalized results and<br>manuscript in progress<br>Follow up analyses under<br>discussion |



## EXPANDING COLLABORATIONS BEYOND GIHSN STAKEHOLDERS





## **PRESENTATIONS + DISCUSSIONS**

### Enterovirus surveillance and proposed collaboration with the GIHSN

**Miranda Delahoy** is senior epidemiologist on the Acute Flaccid Myelitis and Domestic Polio Team in the NCIRD/CDC. She earned a PhD in Environmental Health Sciences from Emory University and completed CDC's Epidemic Intelligence Service fellowship in 2022. She currently works on EV-D68 surveillance initiatives at CDC

# The importance of denominator for burden of disease estimates and how it could be implemented in the GIHSN

**Cecile Viboud** had her PhD in mathematical epidemiological. She joined the Division of International Epidemiology and Population Studies of the Fogarty International Center, NIH, in 2003. She has published extensively in the field of respiratory virus modelling

## The SevScale project

**Bronke Boudewijns** is a junior researcher at the Netherlands Institute for Health Services Research (Nivel), where she works in the Infectious Diseases program since September 2022. Her main focus is on influenza and SARS-CoV-2 related projects, one of which is the SevScale project. Bronke's background is in biomedical sciences and epidemiology, and before joining Nivel she worked at RIVM





#### ANNUAL MEETING, 16 NOVEMBER 2023

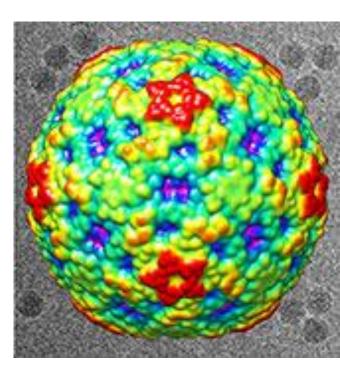
#### **EV-D68 SURVEILLANCE & PROPOSED COLLABORATION WITH GIHSN**

Miranda DELAHOY, US CDC



Foundation for Influenza Epidemiology Sous l'égide de

Fondation de France **National Center for Immunization & Respiratory Diseases** 


# EV-D68 surveillance: Proposed global partnership between GIHSN, CDC, and the Abbott Pandemic Defense Coalition

#### Miranda Delahoy, PhD, MSPH

Acute Flaccid Myelitis and Domestic Polio Team Centers for Disease Control and Prevention

#### **GIHSN** annual meeting

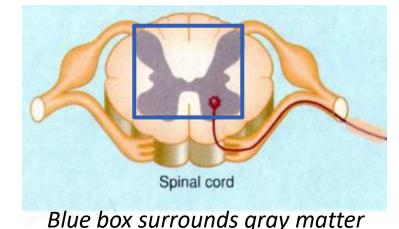
November 16, 2023 WHO HQ, Geneva, Switzerland





# Background: EV-D68 epidemiology

## **EV-D68** causes mild and severe acute respiratory illness.


- First isolated in 1962
- Associated with mild to severe respiratory illness
- Symptoms include shortness of breath, cough, and wheezing
- Likely spreads from person to person when an infected person coughs, sneezes, or touches a surface that is then touched by others
- No approved specific therapies or vaccines



# EV-D68 can also cause acute flaccid myelitis (AFM).

- Uncommon but serious neurologic condition
- Signs and symptoms are similar to poliomyelitis
  - Sudden limb weakness +/- cranial nerve weakness
  - Inflammatory lesions in spinal cord gray matter
- Most reported cases (>90%) are in children
- Most cases have preceding mild viral illness
- Viral testing in AFM patients has been low yield





# EV-D68 caused a nationwide outbreak of respiratory illness in the US in 2014.



# What is Enterovirus EV-D68, the disease causing alarm in the Midwest?

By Jethro Mullen, CNN updated 3:33 PM EDT, Tue September 9, 2014

What is Enterovirus 68, the mysterious illness that is sickening hundreds of children?

By **Abby Phillip** September 18, 2014

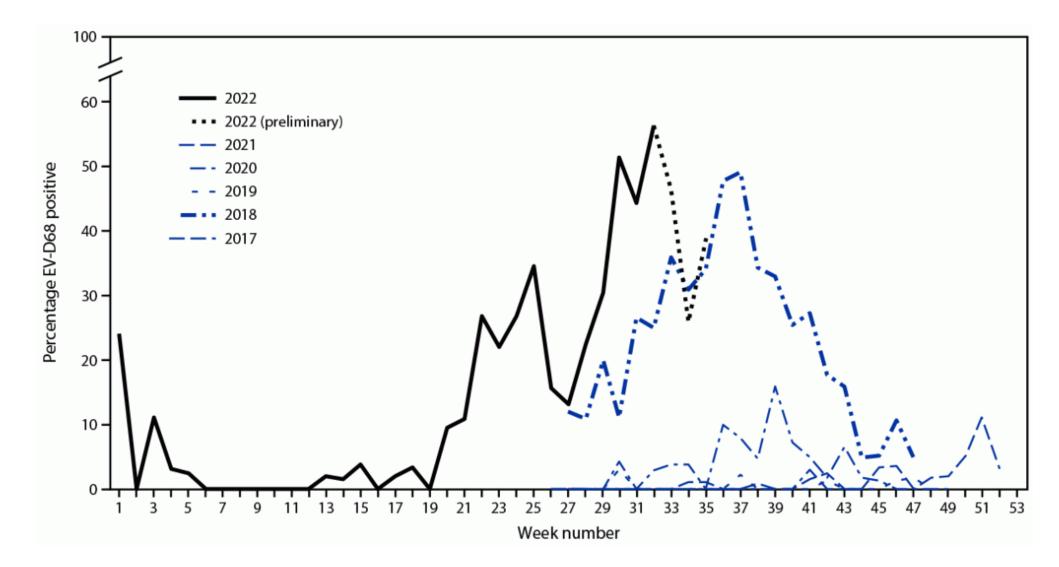
Most Read National



PUBLIC HEALTH

# 4 Things We've Learned About Enterovirus D68, And 1 Mystery

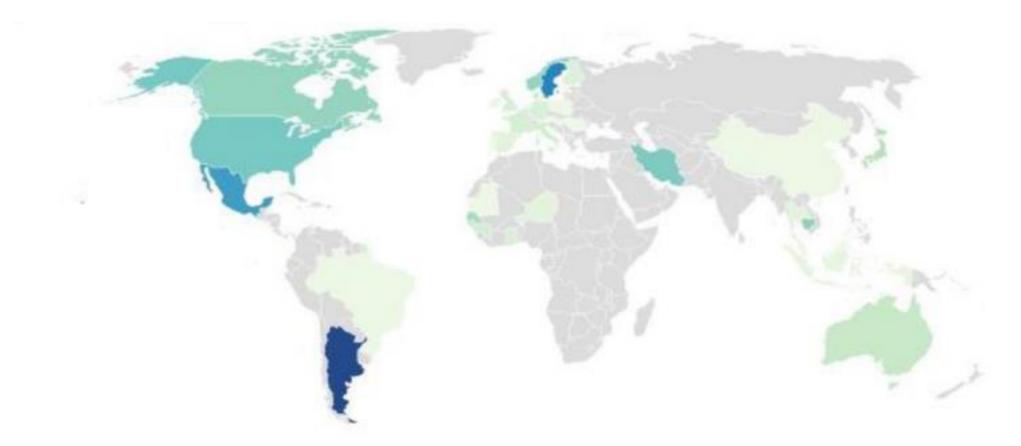
October 9, 2014 • 12:16 PM ET By Nancy Shute


"By Aug. 20, we were beyond our bed capacity," Dr. Mary Anne Jackson, chief of the infectious diseases section at Children's Mercy, said at the IDWeek meeting in Philadelphia.

# Enterovirus D68 is spreading across the US — what we know and don't know

By Julia Belluz | @juliaoftoronto | julia.belluz@voxmedia.com | Updated Oct 7, 2014, 4:14pm EDT

# EV-D68 surveillance data have been collected by the New Vaccine Surveillance Network since 2017.






Positive EV-D68 test results among children and adolescents aged <18 years with ARI and positive RV/EV test results — emergency department or inpatient units — NVSN, United States, 2017–2022

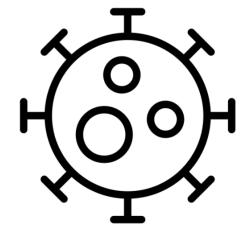
Source: Ma et al. MMWR October 7 2022. DOI: <u>http://dx.doi.org/10.15585/mmwr.mm7140e1</u>.

## Since 2014, EV-D68 outbreaks have been reported globally. However, there is a need for systematized global surveillance.



Countries from which a study of EV-D68 infections was identified in a systematic review and meta-analysis

Fall et al. Global Prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. Feb 8 2022.


# **Global EV-D68 surveillance is of public health importance.**



**Geographic patterns** 

**Temporal trends** 

Inform preparedness



Impact of COVID-19 pandemic on transmission

# Proposed global EV-D68 surveillance partnership

# Three partners bring epidemiologic and laboratory expertise to a proposed global EV-D68 surveillance network.



Global Influenza Hospital Surveillance Network





CONTROL AND PREVENTION

#### Abbott Pandemic Defense Coalition (APDC)

- Global network of sites collecting specimens for early detection & response to pandemic threats
- Laboratory expertise and resources (EV-D68 assay)

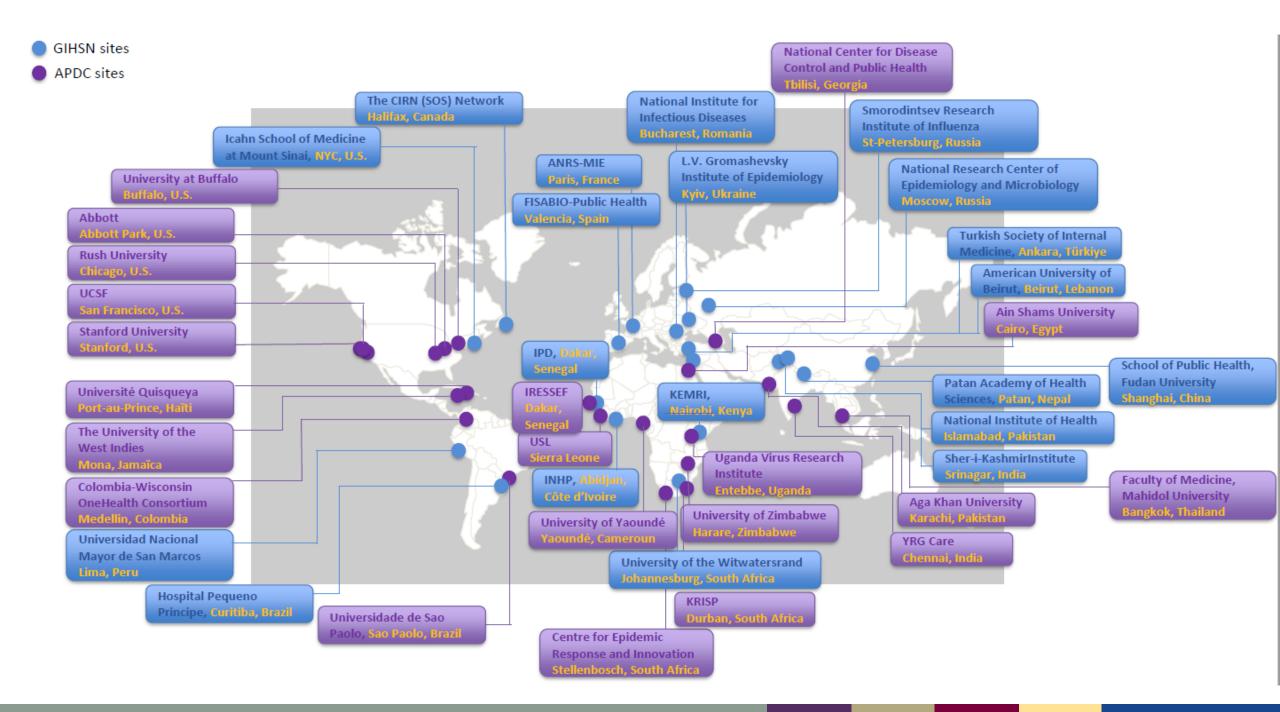
#### **US Centers for Disease Control and Prevention (CDC)**

- EV-D68 surveillance expertise
- Validated EV-D68 assay
- Capacity for limited retrospective respiratory specimen testing for EV-D68 and providing technical assistance

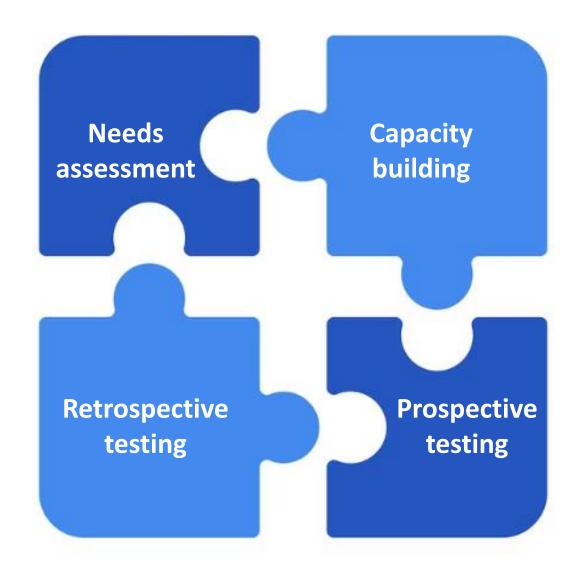
### 20 SITES MONITORING INFECTIOUS DISEASESE ON 5 CONTINENTS Abbott Pandemic Defense Coalition, 2023

USA – Rush University UCSF Stanford University SUNY-Buffalo

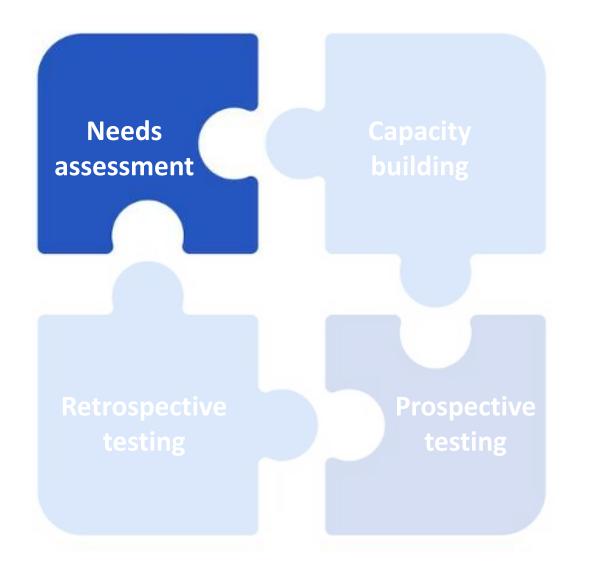
Georgia – National Center for Disease Control (NCDC) Pakistan – Aga Khan University (AKU) Egypt – Ain Shams University (ASU)


Senegal – IRESSEF Sierra Leone – OneHealth/University of Sierra Leone Cameroon – University of Yaoundé I

India – YRG Care Thailand – Mahidol University


Haiti – Quisqueya University Jamaica – University of the West Indies (UWI)

Colombia – OneHealth/Universidad Nacional Colombia Peru – Universidad Peruana Cayetano Heredia (UPCH) Brazil – University of São Paulo (USP)

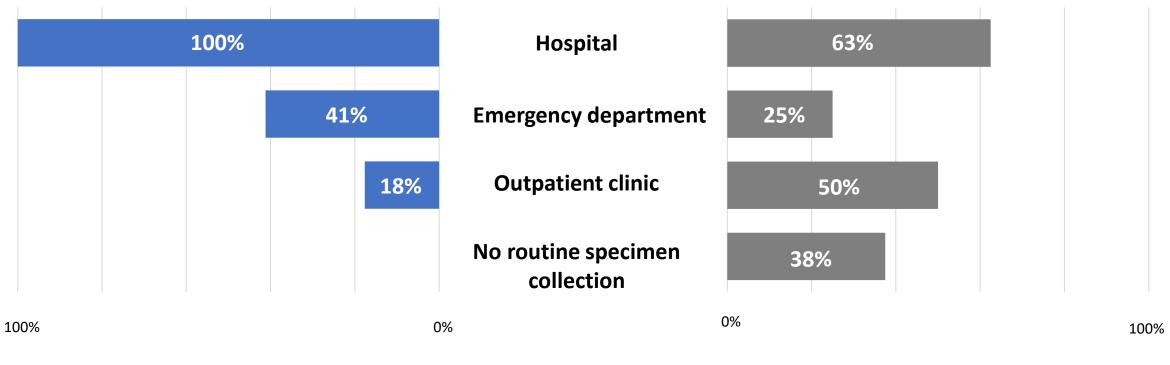

Uganda – Uganda Viral Research Institute (UVRI) Zimbabwe – University of Zimbabwe South Africa – Centre for Epidemic Response and Innovation (CERI)



## **EV-D68 global surveillance vision**



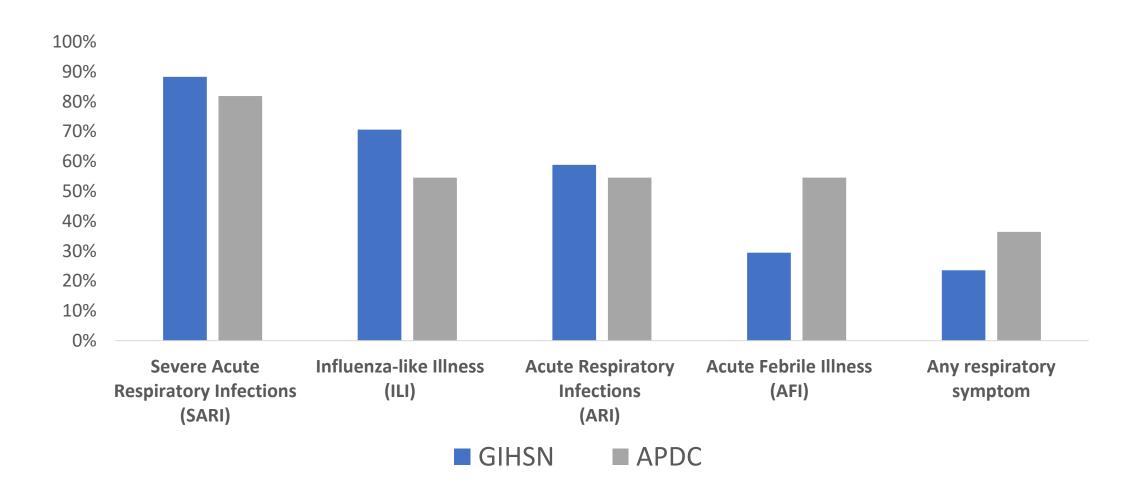
# **EV-D68 global surveillance needs assessment**



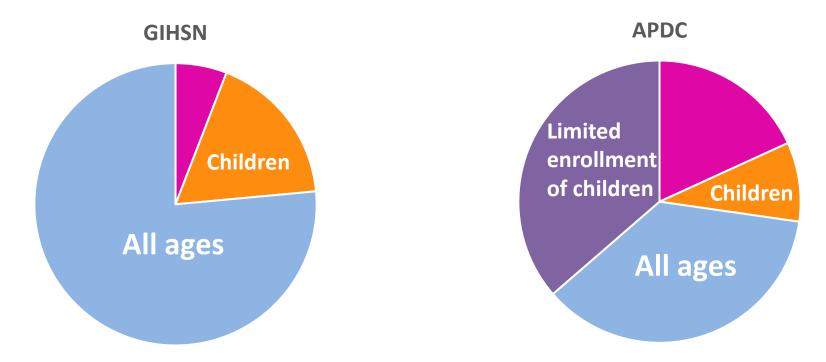

- Characterize enrollment criteria to understand comparability of epidemiologic data between sites & networks
- Understand current testing capacity
- Quantify and characterize stored respiratory specimens available for EV-D68 testing
- Understand barriers to testing for EV-D68 to find potential solutions

All GIHSN sites collect respiratory specimens from hospitalized patients. APDC sites collect specimens from hospitalized patients and outpatients.

GIHSN


APDC




17 sites responded

**16** sites responded

# Most GIHSN & APDC sites employ systematic SARI specimen collection.



# Nearly all GIHSN sites and most APDC sites collect specimens from children.



- Adults (≥18 years) only\*
- Children/adolescents (<18 years) only\*</p>
- All ages
- Other\*\*

- \* enrolls from the full age range of ≥18 years old or <18 years old
- \*\* enrolls from a limited age range of children and/or adults (e.g., only ages 5–17 years old)

# **GIHSN sites test for several viruses.**

#### Virus testing at GIHSN sites — as reported on needs assessment

|                       | Influenza | SARS-CoV-2 | RSV | HMPV | HCOV | PIV | Adenovirus | RV/EV | EV-D68 |
|-----------------------|-----------|------------|-----|------|------|-----|------------|-------|--------|
| Brazil                | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| China                 | ×         |            | ×   | ×    |      | ×   | ×          | ×     |        |
| Cote d'Ivoire         | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| France                | ×         | ×          | ×   |      |      |     |            | ×     |        |
| Kenya                 | ×         | ×          | ×   |      |      |     | ×          |       |        |
| Lebanon               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Nepal                 | ×         |            |     |      |      |     |            |       |        |
| Pakistan              | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Peru                  | ×         | ×          | ×   | ×    |      | ×   | ×          |       |        |
| Romania               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Russia–St. Petersburg | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | *      |
| Senegal               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| South Africa          | ×         | ×          | ×   | ×    |      |     | ×          | ×     |        |
| Spain                 | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| Türkiye               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Ukraine               | ×         | ×          |     |      |      |     |            |       |        |
| USA–New York          | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |

\*in progress

**RV/EV = rhinovirus/enterovirus** 

### 13 GIHSN sites conduct RV/EV testing. 3 APDC sites (not pictured) conduct RV/EV testing.

#### Virus testing at GIHSN sites — as reported on needs assessment

|                       | Influenza | SARS-CoV-2 | RSV | HMPV | HCOV | PIV | Adenovirus | RV/EV | EV-D68 |
|-----------------------|-----------|------------|-----|------|------|-----|------------|-------|--------|
| Brazil                | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| China                 | ×         |            | ×   | ×    |      | ×   | ×          | ×     |        |
| Cote d'Ivoire         | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| France                | ×         | ×          | ×   |      |      |     |            | ×     |        |
| Kenya                 | ×         | ×          | ×   |      |      |     | ×          |       |        |
| Lebanon               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Nepal                 | ×         |            |     |      |      |     |            |       |        |
| Pakistan              | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Peru                  | ×         | ×          | ×   | ×    |      | ×   | ×          |       |        |
| Romania               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Russia–St. Petersburg | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | *      |
| Senegal               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| South Africa          | ×         | ×          | ×   | ×    |      |     | ×          | ×     |        |
| Spain                 | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| Türkiye               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Ukraine               | ×         | ×          |     |      |      |     |            |       |        |
| USA–New York          | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |

\*in progress

**RV/EV = rhinovirus/enterovirus** 

### 4 GIHSN sites conduct EV-D68 testing. 2 APDC sites (not pictured) conduct EV-D68 testing.

|                       | Influenza | SARS-CoV-2 | RSV | HMPV | HCOV | PIV | Adenovirus | RV/EV | EV-D68 |
|-----------------------|-----------|------------|-----|------|------|-----|------------|-------|--------|
| Brazil                | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| China                 | ×         |            | ×   | ×    |      | ×   | ×          | ×     |        |
| Cote d'Ivoire         | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| France                | ×         | ×          | ×   |      |      |     |            | ×     |        |
| Kenya                 | ×         | ×          | ×   |      |      |     | ×          |       |        |
| Lebanon               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Nepal                 | ×         |            |     |      |      |     |            |       |        |
| Pakistan              | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Peru                  | ×         | ×          | ×   | ×    |      | ×   | ×          |       |        |
| Romania               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Russia–St. Petersburg | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | *      |
| Senegal               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| South Africa          | ×         | ×          | ×   | ×    |      |     | ×          | ×     |        |
| Spain                 | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     | ×      |
| Türkiye               | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |
| Ukraine               | ×         | ×          |     |      |      |     |            |       |        |
| USA–New York          | ×         | ×          | ×   | ×    | ×    | ×   | ×          | ×     |        |

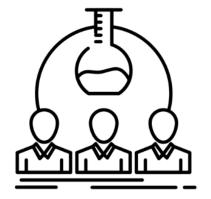
\*in progress

**RV/EV = rhinovirus/enterovirus** 

Across the two networks, there are many stored respiratory specimens that may be available for further testing.



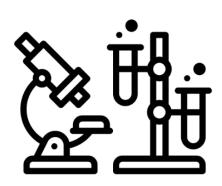
Stored respiratory specimens


# >600

Respiratory specimens known to be EV/RV+

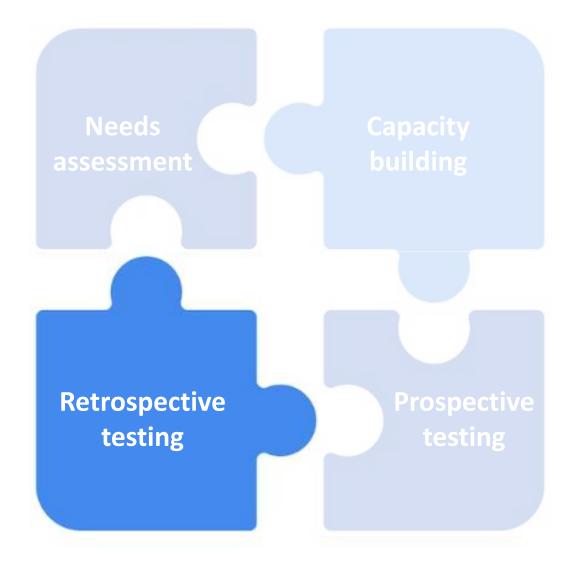
# GIHSN and APDC sites reported similar barriers to EV-D68 testing and sequencing.




Lab resources



Personnel and staff training




Reagents



Equipment

## **EV-D68 global surveillance: retrospective testing**



# There is a need for a specimen prioritization plan for retrospective testing.



RV/EV+



from children



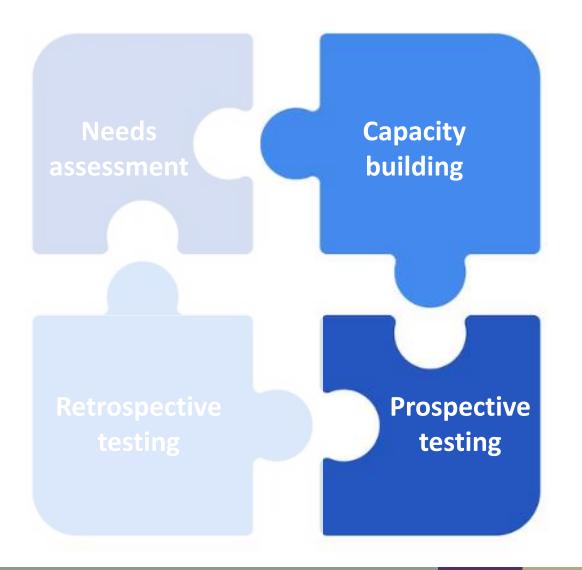
collected during certain years

# There will be trade-offs to consider when choosing which stored specimens to test.

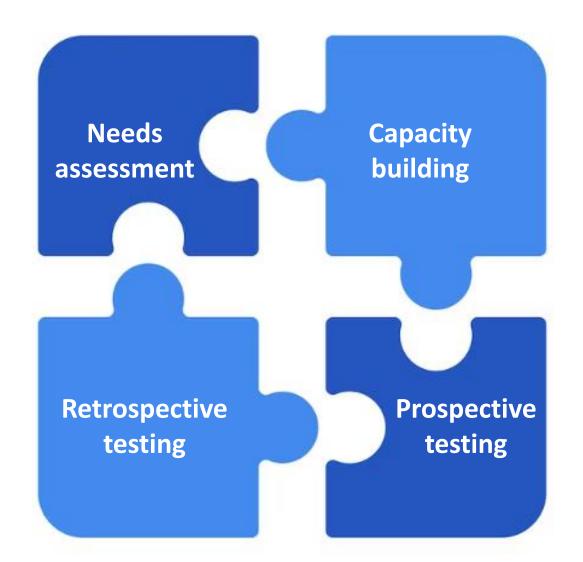


Representation of different:

- Geographic regions
- Age groups
- Years


Testing capacity Timeline

# Retrospective testing at CDC will likely be limited to a subset of GIHSN "pilot" sites.


- CDC can test a subset of stored respiratory specimens.
- We are looking to identify sites:
  - With an interest in prospective EV-D68 testing
  - With the ability to ship respiratory specimens to CDC
  - Currently conducting RV/EV testing
    - There may also be an opportunity for retrospective testing of samples collected from pilot sites that do not yet have RV/EV testing capacity, but are interested in such testing.
- We are also interested in connecting with sites already testing for EV-D68.



## **EV-D68 global surveillance: prospective testing**



## **EV-D68 global surveillance vision**



# Thank you

**GIHSN/Impact Healthcare:** Sandra Chaves, Catherine Commaille-Chapus

**APDC:** Francisco Averhoff, Mary Rodgers **Division of Viral Diseases, CDC:** Adriana Lopez, Terry Ng, Sarah Kidd, Janell Routh

**Coronavirus and Other Respiratory Viruses Division (CORVD), CDC:** Claire Midgley, Melisa M. Shah

### **GIHSN & APDC PIs and site personnel**

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

### WHO hosts

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.



# **Geneva presentation outline**

- EV-D68 background (3')
- Outstanding questions in EV-D68 epidemiology/need for global surveillance (1')
- Collaborators for proposed global network (CDC, GIHSN, APDC) (2')
- Surveillance vision: needs assessment, capacity building, retrospective pilot testing, prospective testing (2')
- Needs assessment high-level results (4')
- Open questions & next steps, informed by needs assessment (3')
- Discussion (10')

# All GIHSN sites enroll from the hospital setting.

| GIHSN                 | Hospital | ED | Outpatient |
|-----------------------|----------|----|------------|
| Brazil                | ×        |    |            |
| China                 | ×        |    |            |
| Cote d'Ivoire         | ×        | ×  |            |
| France                | ×        | ×  |            |
| Kenya                 | ×        | ×  | ×          |
| Lebanon               | ×        |    |            |
| Nepal                 | ×        |    |            |
| Pakistan              | ×        | ×  | ×          |
| Peru                  | ×        |    |            |
| Romania               | ×        |    |            |
| Russia–St. Petersburg | ×        | ×  |            |
| Senegal               | ×        | ×  | ×          |
| South Africa          | ×        |    |            |
| Spain                 | ×        |    |            |
| Türkiye               | ×        | ×  |            |
| Ukraine               | ×        |    |            |
| USA–New York          | ×        |    |            |

# APDC sites enroll primarily from the hospital.

| GIHSN                 | Hospital | ED | Outpatient |
|-----------------------|----------|----|------------|
| Brazil                | ×        |    |            |
| China                 | ×        |    |            |
| Cote d'Ivoire         | ×        | ×  |            |
| France                | ×        | ×  |            |
| Kenya                 | ×        | ×  | ×          |
| Lebanon               | ×        |    |            |
| Nepal                 | ×        |    |            |
| Pakistan              | ×        | ×  | ×          |
| Peru                  | ×        |    |            |
| Romania               | ×        |    |            |
| Russia–St. Petersburg | ×        | ×  |            |
| Senegal               | ×        | ×  | ×          |
| South Africa          | ×        |    |            |
| Spain                 | ×        |    |            |
| Türkiye               | ×        | ×  |            |
| Ukraine               | ×        |    |            |
| USA–New York          | ×        |    |            |

| APDC Sites        | Hospital | ED | Outpatient |
|-------------------|----------|----|------------|
| Brazil            | ×        | ×  |            |
| Cameroon          | ×        |    | ×          |
| Colombia          |          |    |            |
| Georgia           | ×        |    | ×          |
| Haiti             | ×        |    | ×          |
| India             | ×        |    | ×          |
| Jamaica           | ×        | ×  |            |
| Pakistan          | ×        |    | ×          |
| Peru              | ×        | ×  | ×          |
| Senegal           |          |    |            |
| Sierra Leone      |          |    |            |
| South Africa      |          |    |            |
| Thailand          |          |    |            |
| Uganda            | ×        |    | ×          |
| USA–San Francisco | ×        | ×  | ×          |
| Zimbabwe          |          |    |            |

\*Zimbabwe enrolls in outbreaks or sporadic cases

\*\*Colombia and Thailand not collecting respiratory specimens.

\*\*\*Senegal, Sierra Leone, South Africa plan to collect respiratory specimens in the future.

# APDC has less focus on children < 5yo.

|                       | <1 year | 1-4 | 5-17 | 18-64 | 65+ |
|-----------------------|---------|-----|------|-------|-----|
| Brazil                | ×       | ×   | ×    |       |     |
| China                 | ×       | ×   | ×    |       |     |
| Cote d'Ivoire         | ×       | ×   | ×    | ×     | ×   |
| France                |         |     |      | ×     | ×   |
| Kenya                 | ×       | ×   | ×    | ×     | ×   |
| Lebanon               | ×       | ×   | ×    | ×     | ×   |
| Nepal                 | ×       | ×   | ×    | ×     | ×   |
| Pakistan              | ×       | ×   | ×    | ×     | ×   |
| Peru                  | ×       | ×   | ×    | ×     | ×   |
| Romania               | ×       | ×   | ×    | ×     | ×   |
| Russia–St. Petersburg | ×       | ×   | ×    | ×     | ×   |
| Senegal               | ×       | ×   | ×    | ×     | ×   |
| South Africa          | ×       | ×   | ×    |       |     |
| Spain                 | ×       | ×   | ×    | ×     | ×   |
| Türkiye               | ×       | ×   | ×    | ×     | ×   |
| Ukraine               | ×       | ×   | ×    | ×     | ×   |
| USA–New York          | ×       | ×   | ×    | ×     | ×   |

.

| APDC Sites        | <1 year | 1-4 | 5-17 | 18-64 | 65+ |
|-------------------|---------|-----|------|-------|-----|
| Brazil            | ×       | ×   | ×    |       |     |
| Cameroon          |         |     |      | ×     | ×   |
| Georgia           | ×       | ×   | ×    | ×     | ×   |
| Haiti             |         | ×   | ×    | ×     |     |
| India             |         |     | ×    | ×     | ×   |
| Jamaica           | ×       | ×   | ×    | ×     | ×   |
| Pakistan          |         |     |      | ×     |     |
| Peru              |         |     | ×    | ×     | ×   |
| Uganda            | ×       | ×   | ×    | ×     | ×   |
| USA–San Francisco | ×       | ×   | ×    | ×     | ×   |
| Zimbabwe          |         | ×   | ×    | ×     |     |

# Most GIHSN sites employ systematic SARI sample collection.

| GIHSN                 | SARI | ILI | ARI | AFI | Any respiratory<br>symptom | Notes                                                                |
|-----------------------|------|-----|-----|-----|----------------------------|----------------------------------------------------------------------|
| Brazil                | ×    | ×   | ×   | ×   | ×                          |                                                                      |
| China                 |      |     | ×   |     |                            |                                                                      |
| Cote d'Ivoire         | ×    | ×   |     |     |                            |                                                                      |
| France                | ×    |     |     |     |                            |                                                                      |
| Kenya                 | ×    | ×   |     |     |                            | Extended SARI definition for RSV surveillance                        |
| Lebanon               | ×    |     |     |     |                            | Modified SARI definition                                             |
| Nepal                 | ×    |     |     |     |                            |                                                                      |
| Pakistan              | ×    | ×   | ×   | ×   | ×                          |                                                                      |
| Peru                  | ×    |     |     | ×   |                            |                                                                      |
| Romania               | ×    | ×   | ×   |     |                            |                                                                      |
| Russia–St. Petersburg | ×    | ×   | ×   |     |                            |                                                                      |
| Senegal               | ×    | ×   | ×   | ×   | ×                          |                                                                      |
| South Africa          | ×    | ×   | ×   | ×   | ×                          | Neonatal sepsis                                                      |
| Spain                 | ×    | ×   | ×   |     |                            | Requiring Hospital Admission                                         |
| Türkiye               |      | ×   |     |     |                            |                                                                      |
| Ukraine               | ×    | ×   | ×   |     |                            |                                                                      |
| USA–New York          | ×    | ×   | ×   |     |                            | Respiratory symptoms with some variation due to physician discretion |

# Most APDC sites employ systematic SARI sample collection.

| GIHSN                 | SARI | ILI | ARI | AFI | Any respiratory<br>symptom |
|-----------------------|------|-----|-----|-----|----------------------------|
| Brazil                | ×    | ×   | ×   | ×   | ×                          |
| China                 |      |     | ×   |     |                            |
| Cote d'Ivoire         | ×    | ×   |     |     |                            |
| France                | ×    |     |     |     |                            |
| Kenya                 | ×    | ×   |     |     |                            |
| Lebanon               | ×    |     |     |     |                            |
| Nepal                 | ×    |     |     |     |                            |
| Pakistan              | ×    | ×   | ×   | ×   | ×                          |
| Peru                  | ×    |     |     | ×   |                            |
| Romania               | ×    | ×   | ×   |     |                            |
| Russia–St. Petersburg | ×    | ×   | ×   |     |                            |
| Senegal               | ×    | ×   | ×   | ×   | ×                          |
| South Africa          | ×    | ×   | ×   | ×   | ×                          |
| Spain                 | ×    | ×   | ×   |     |                            |
| Türkiye               |      | ×   |     |     |                            |
| Ukraine               | ×    | ×   | ×   |     |                            |
| USA–New York          | ×    | ×   | ×   |     |                            |

| APDC Sites        | SARI | ILI | ARI | AFI | Any respiratory<br>symptom |
|-------------------|------|-----|-----|-----|----------------------------|
| Brazil            | ×    |     | ×   |     |                            |
| Cameroon          |      |     |     |     | ×                          |
| Georgia           | ×    | ×   |     | ×   |                            |
| Haiti             | ×    | ×   | ×   | ×   |                            |
| India             | ×    | ×   | ×   | ×   |                            |
| Jamaica           | ×    |     |     |     |                            |
| Pakistan          |      |     |     | ×   | ×                          |
| Peru              | ×    | ×   | ×   | ×   | ×                          |
| Uganda            | ×    | ×   |     |     | ×                          |
| USA–San Francisco | ×    |     | ×   | ×   |                            |
| Zimbabwe          | ×    | ×   | ×   |     |                            |

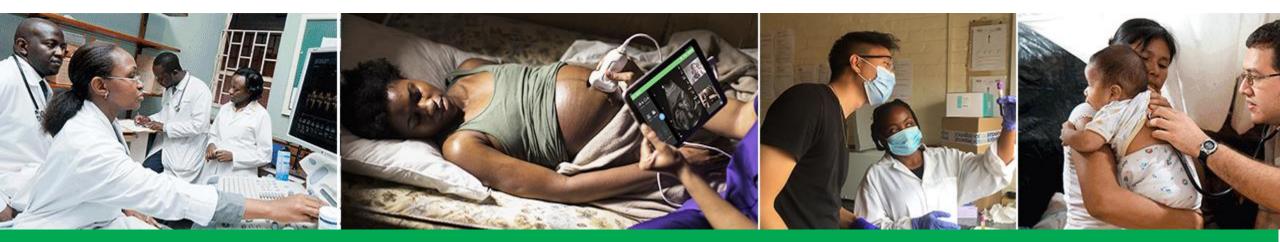


#### ANNUAL MEETING, 16 NOVEMBER 2023

#### LEVERAGING THE GIHSN TO SUPPORT DISEASE BURDEN ESTIMATION

Cécile VIBOUD, Fogarty International Center




Foundation for Influenza Epidemiology Sous l'égide de

Fondation de France

### Leveraging the GIHSN network to support disease burden estimation

Chelsea Hansen<sup>1</sup>, Sandra Chaves<sup>2</sup>, Marta Nunes<sup>3</sup>, Cécile Viboud<sup>1</sup>

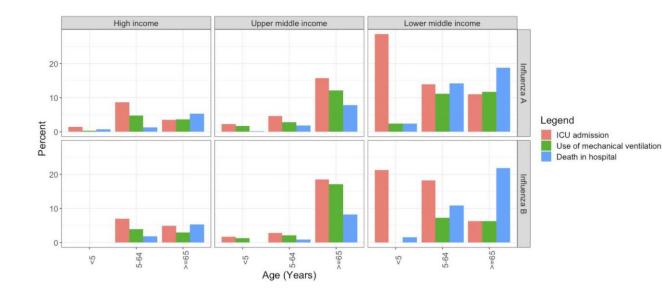
<sup>1</sup> Fogarty International Center, National Institutes of Health, USA
 <sup>2</sup> Foundation for Influenza Epidemiology, Fondation de France, Paris, France.
 <sup>3</sup> Center of Excellence in Respiratory Pathogens, Universite Claude Bernard, Lyon I, France



Fogarty International Center

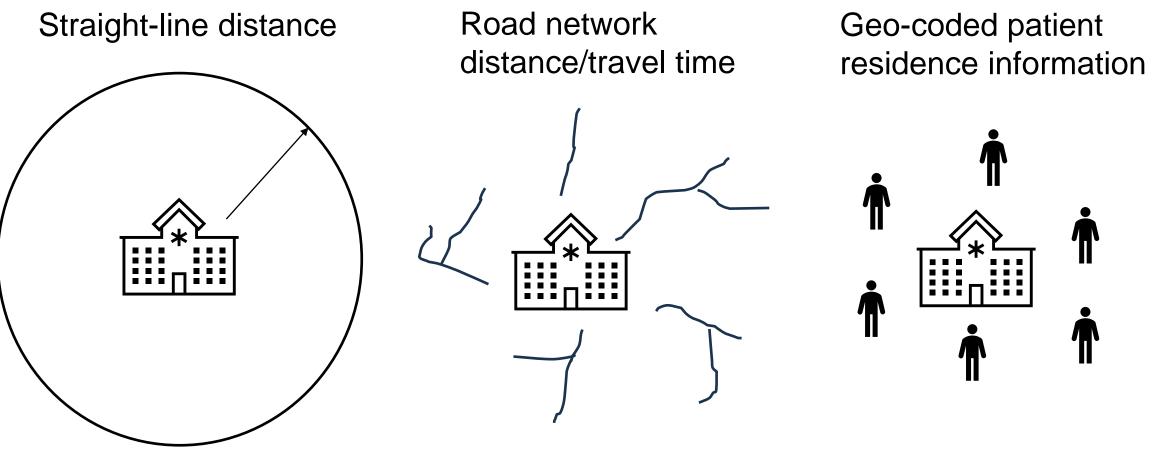
Annual GIHSN Meeting, Geneva, Nov 16-17, 2023

#### Previous work: Comparing influenza severity across settings

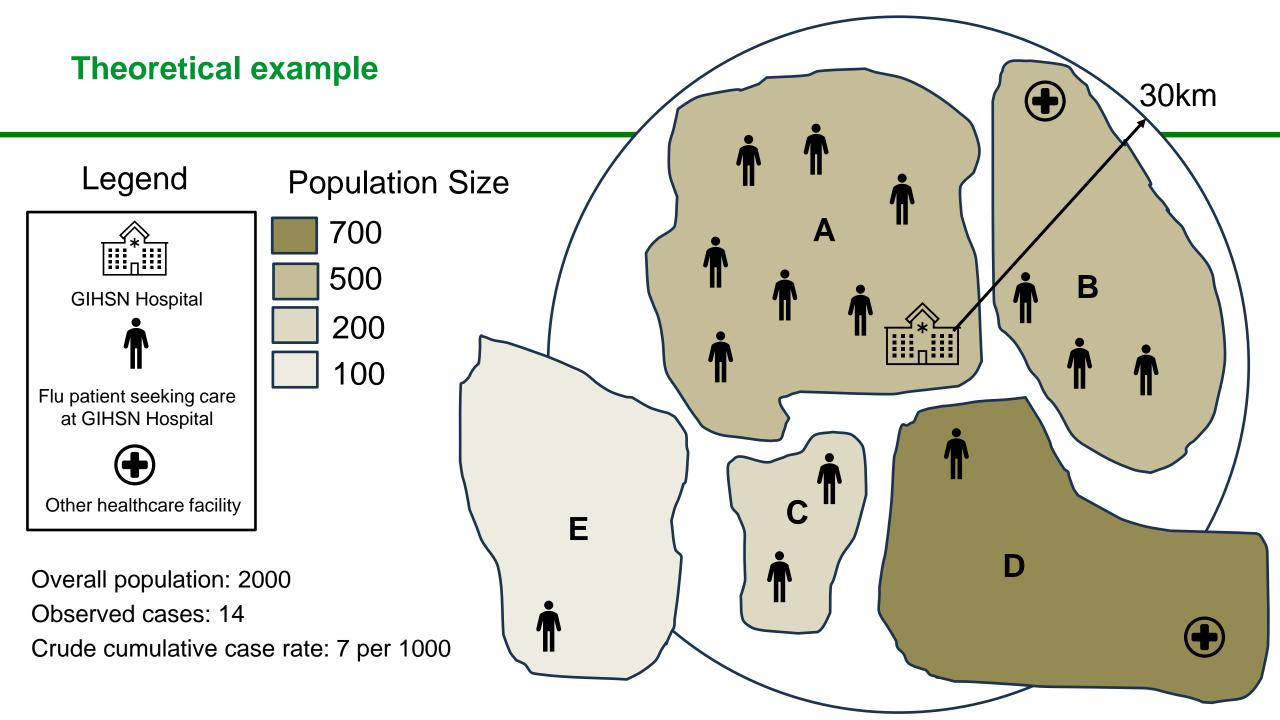

The Journal of Infectious Diseases

#### MAJOR ARTICLE




#### Predictors of Severity of Influenza-Related Hospitalizations: Results From the Global Influenza Hospital Surveillance Network (GIHSN)

Lily E. Cohen, <sup>1,2,®</sup> Chelsea L. Hansen,<sup>3,4,5</sup> Melissa K. Andrew,<sup>6</sup> Shelly A. McNeil,<sup>6</sup> Philippe Vanhems,<sup>7</sup> Jan Kyncl,<sup>8,9</sup> Javier Díez Domingo,<sup>10</sup> Tao Zhang,<sup>11</sup> Ghassan Dbaibo,<sup>12</sup> Victor Alberto Laguna-Torres,<sup>13</sup> Anca Draganescu,<sup>14</sup> Elsa Baumeister,<sup>15</sup> Doris Gomez,<sup>16</sup> Sonia M. Raboni,<sup>17</sup> Heloisa I. G. Giamberardino,<sup>17</sup> Marta C. Nunes,<sup>18,19</sup> Elena Burtseva,<sup>20</sup> Anna Sominina,<sup>21</sup> Snežana Medić,<sup>22,23</sup> Daouda Coulibaly,<sup>24</sup> Afif Ben Salah,<sup>25,26</sup> Nancy A Otieno,<sup>27</sup> Parvaiz A. Koul,<sup>28</sup> Serhat Unal,<sup>29,30</sup> Mine Durusu Tanriover,<sup>30,31</sup> Marie Mazur,<sup>1</sup> Joseph Bresee,<sup>1</sup> Cecile Viboud,<sup>3</sup> and Sandra S. Chaves<sup>32</sup>




- Previous work from GIHSN demonstrated an increased risk of ICU admission (OR=6.95), mechanical ventilation (OR=3.52), and death (OR=4.02) among patients hospitalized in LMICs compared to high income settings
- These data cannot be used to compare disease rates across settings without population denominators

#### Methods for defining hospital catchment areas



Preferred method!



#### **Theoretical example: cumulative case ratio method**

| Neighborhood | Population | Observed<br>patients | Expected<br>patients* | Cumulative case ratio<br>(Observed/Expected) | Include in<br>denominator<br>** |
|--------------|------------|----------------------|-----------------------|----------------------------------------------|---------------------------------|
| Α            | 500        | 7                    | 3.5                   | 2 (0.8-3.8)                                  | Yes                             |
| В            | 500        | 3                    | 3.5                   | 0.9 (0.2-2.1)                                | Yes                             |
| С            | 200        | 2                    | 1.4                   | 1.4 (0.1-4.1)                                | Yes                             |
| D            | 700        | 1                    | 4.9                   | 0.2 (0.0-0.8)                                | No                              |
| E            | 100        | 1                    | 0.7                   | 1.7 (0.0-6.5)                                | Yes                             |

\*Based on cumulative case rate for all neighborhoods in 30km radius (7 per 1000) \*\*Neighborhood is either contributing 0 or 100% of their population to the denominator

Adjusted influenza hospitalization rate = 10 per 1000 population (13/1300)

#### Catchment area sensitivity to methodology: case study from Uganda

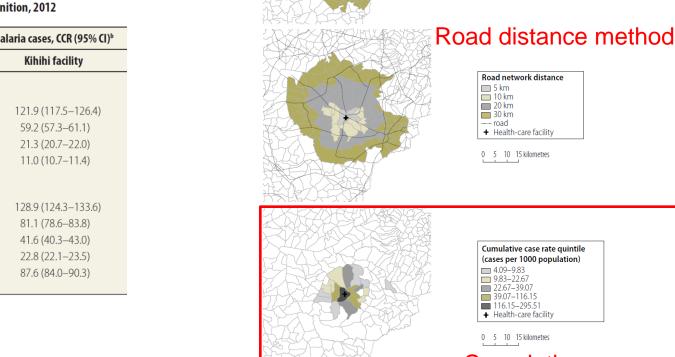
#### Determining health-care facility catchment areas in Uganda using data on malaria-related visits

Kate Zinszer,<sup>a</sup> Katia Charland,<sup>a</sup> Ruth Kigozi,<sup>b</sup> Grant Dorsey,<sup>c</sup> Moses R Kamya<sup>d</sup> & David L Buckeridge<sup>a</sup>

Table 1. Cumulative rate of confirmed malaria cases at six health-care facilities in Uganda,<sup>a</sup> by catchment area definition, 2012

| Catchment area                             |                  |                     | Cumulative rate of confirmed malaria cases, CCR (95% CI) <sup>b</sup> |                     |  |
|--------------------------------------------|------------------|---------------------|-----------------------------------------------------------------------|---------------------|--|
| definition                                 | Aduku facility   | Kamwezi facility    | Kasambya facility                                                     | Kihihi facility     |  |
| Straight-line<br>distance, <sup>c</sup> km |                  |                     |                                                                       |                     |  |
| 5                                          | 89.2 (82.0–97.0) | 234.9 (226.2–243.8) | 218.3 (211.6–225.1)                                                   | 121.9 (117.5–126.4) |  |
| 10                                         | 45.9 (43.7-48.2) | 71.8 (69.3–74.3)    | 116.2 (112.9–119.6)                                                   | 59.2 (57.3-61.1)    |  |
| 20                                         | 13.3 (12.8–14.0) | 22.0 (21.2–22.8)    | 39.5 (38.4–40.7)                                                      | 21.3 (20.7–22.0)    |  |
| 30                                         | 7.2 (6.8–7.5)    | 8.2 (7.9–8.5)       | 21.8 (21.2–22.5)                                                      | 11.0 (10.7–11.4)    |  |
| Road network<br>distance, <sup>d</sup> km  |                  |                     |                                                                       |                     |  |
| 5                                          | 0 (NA)           | 156.1 (150.9–161.4) | 218.3 (211.6–225.1)                                                   | 128.9 (124.3–133.6) |  |
| 10                                         | 48.5 (46.0–51.1) | 130.0 (125.6–134.5) | 218.3 (211.6–225.1)                                                   | 81.1 (78.6–83.8)    |  |
| 20                                         | 17.6 (16.8–18.5) | 45.8 (44.2–47.4)    | 49.0 (47.7–50.5)                                                      | 41.6 (40.3–43.0)    |  |
| 30                                         | 11.7 (11.2–12.2) | 32.0 (30.9–33.2)    | 33.0 (32.0-33.9)                                                      | 22.8 (22.1–23.5)    |  |
| Cumulative case<br>ratio <sup>e</sup>      | 38.1 (36.3–40.0) | 193.1 (186.8–199.6) | 67.2 (65.3–69.1)                                                      | 87.6 (84.0–90.3)    |  |

CCR, cumulative case rate; CI, confidence interval; NA, not applicable.


<sup>a</sup> Data on the health-care facilities were collected by the Uganda Malaria Surveillance Project.

<sup>b</sup> Per 1000 population.

 $^{\circ}\,$  Catchment areas were defined as lying within a specified straight-line distance from the facility.

<sup>d</sup> Catchment areas were defined as lying within a specified road network distance from the facility.

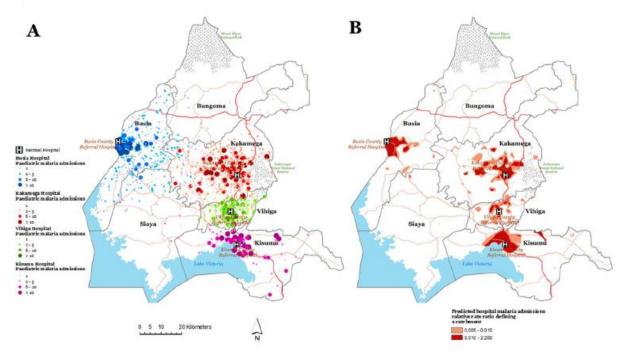
<sup>e</sup> A parish was included in the catchment area if the upper limit of the 95% CI for the cumulative case ratio for the parish (i.e. the ratio of observed to expected malaria-related



#### Cumulative case ratio method

Straight line method

Straight line distance 5 km 10 km


0 5 10 15 kilometres

20 km 30 km Health-care facility

### Methodological refinements: A case study from Kenya

### Estimating hospital catchments from in-patient admission records: a spatial statistical approach applied to malaria

Victor A. Alegana<sup>1,2,3\*</sup>, Cynthia Khazenzi<sup>1</sup>, Samuel O. Akech<sup>1</sup> & Robert W. Snow<sup>1,4</sup>



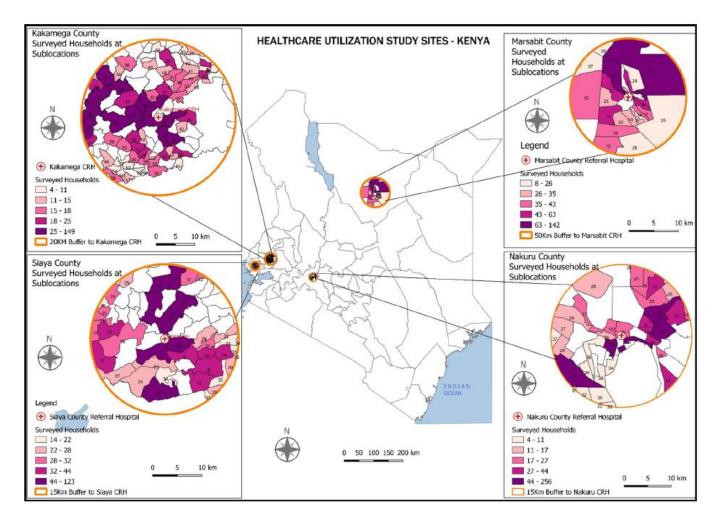
Scientific Reports https://doi.org/10.1038/s41598-020-58284-0

#### Limitations in previous methods

- Distance and travel time methods do not consider competition from other hospitals
- Case ratio methods assume uniform careseeking and disease burden

#### **Methodological refinements**

- Bayesian hierarchical zero-inflated Poisson regression implicitly considers hospital competition by including zero counts
- Includes covariate for distance to nearest road to account for accessibility (could include more variables)
- Considers severity of disease
- Highlights strong effect of distance to hospital for milder cases


# **Complimentary Approaches: Healthcare provider surveys (theoretical example)**

Ask healthcare providers: What proportion of your patients come from each neighborhood?

|               | Neighborhood<br>A | Neighborhood<br>B | Neighborhood<br>C | Neighborhood<br>D | Neighborhood<br>E |
|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| HC provider 1 | 85%               | 10%               | 3%                | 0%                | 2%                |
| HC provider 2 | 90%               | 5%                | 5%                | 0%                | 0%                |
| HC provider 3 | 70%               | 10%               | 15%               | 4%                | 1%                |
| HC provider 4 | 75%               | 13%               | 10%               | 2%                | 0%                |
| Ensemble      | 80%               | 10%               | 7%                | 2%                | 1%                |

Compare this with population size to determine thresholds for inclusion

#### **Complimentary approaches: Healthcare Utilization Surveys (case study)**



Emukule et al. BMC Public Health (2023) 23:353 https://doi.org/10.1186/s12889-023-15252-3 **BMC Public Health** 

#### RESEARCH

#### **Open Access**

Check for updates

Healthcare-seeking behavior for respiratory illnesses in Kenya: implications for burden of disease estimation

Gideon O. Emukule<sup>1\*</sup>, Eric Osoro<sup>2</sup>, Bryan O. Nyawanda<sup>3</sup>, Isaac Ngere<sup>2</sup>, Daniel Macharia<sup>1</sup>, Godfrey Bigogo<sup>3</sup>, Nancy A. Otieno<sup>3</sup>, Sandra S. Chaves<sup>1,4</sup>, M. Kariuki Njenga<sup>2</sup> and Marc-Alain Widdowson<sup>1,5</sup>

- 2018 survey of households
- Reported which hospital they went to, if any (competition)
- Hospital-based surveillance captures less than one quarter of severe pneumonia in the community

# Planned activities: estimate catchment areas, and influenza disease rates, for select GISHN hospitals

- The current pilot project has 4 aims
  - 1. Build catchment areas around the GISHN sites in Kenya, South Africa, and Lebanon to estimate population denominators
  - 2. Estimate distance and travel-time to GIHSN sites for the catchment area populations
  - 3. Estimate influenza hospitalization rates and in-hospital mortality rates from 2017-2024
  - Identify how care-seeking behavior and catchment areas may differ based on disease severity and patient age or have changed because of the COVID-19 pandemic

### **Data requirements**

| Data                                                                              | Details                                        | Source                                     |
|-----------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|
| Residence location* information for<br>patients included in the GIHSN<br>database | Individual-level; linked to GIHSN database     | GIHSN sites                                |
| Residence location* information for<br>all patients with respiratory<br>symptoms  | Aggregated by age, geographic unit, and season | GIHSN sites                                |
| Population estimates from all geographic units included in the catchment area     | Smallest geographic unit available             | Census data (where available);<br>WorldPop |

Ideally for all years for which the hospital has contributed surveillance data to GISHN

\*exact address is not required, fine-scale administrative units (neighborhood, village, etc.) would be sufficient

## Questions for sites and open discussion (1/2)

- Would other hospitals beyond Lebanon, Kenya and South Africa be interested in participating/have the necessary patient residence location? Could we do this in a few HIC and LMIC sites?
- How is patient residence location captured in your hospital?
- What is the proportion of missing patient locations?
- What is the smallest administrative unit in your country?
- Can patient location be connected to GISHN records?
- How would you be able to share the data for analysis?

## Questions for sites and open discussion (2/2)

- Have other hospitals conducted healthcare utilization surveys?
- Would hospital physicians and nurses be amenable to a survey of patient locations?



#### ANNUAL MEETING, 16 NOVEMBER 2023

#### THE SEVSCALE PROJECT

#### Bronke BOUDEWIJNS, Nivel



Foundation for Influenza Epidemiology Sous l'égide de

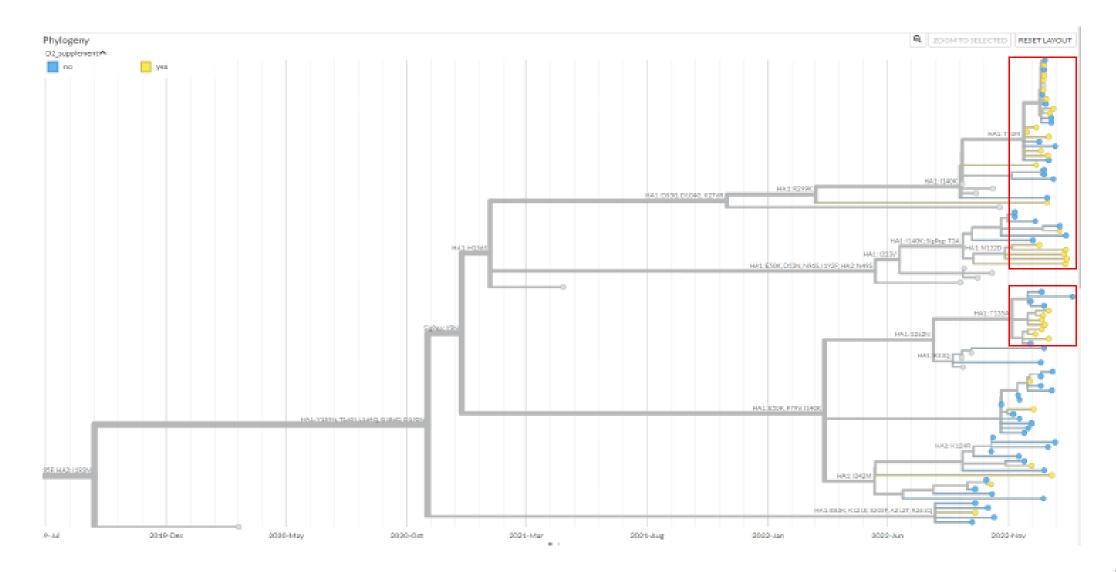
Fondation de France

## SevScale project

**GIHSN Meeting, 16 November 2023** 

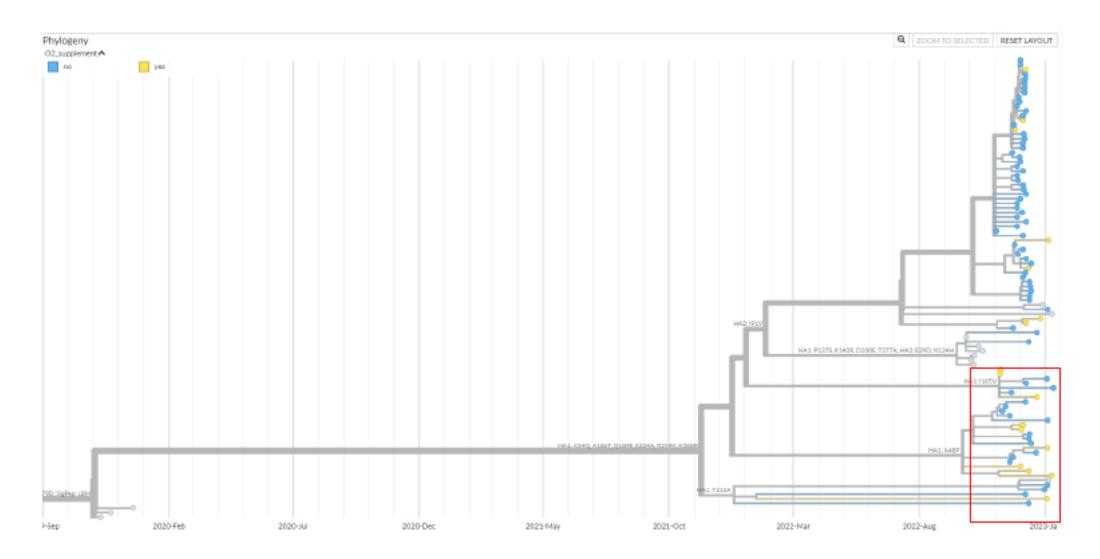


**Bronke Boudewijns** 


## In memory of dr. John Paget



### Introduction


- Currently there is no classification of severity in hospitalized influenza patients
- Work led by prof. Bruno Lina: oxygen supplementation more common in certain lineages/clades
  - $\rightarrow$  Severity clusters in these lineages/clades
- Need for a severity score that takes into account more aspects of severity
- Attaching a severity score to sequence information could help in strain selection

#### **Fig 3:** Phylogenetic tree of the H3N2 viruses analyzed between 1st of September 2022 and 1st of February 2023. Cases requiring oxygen supplementation are in yellow. Red squares indicate increased cases with oxygen supplementation.



#### Fig 2: Phylogenetic tree of the H1N1pdm09 viruses analyzed between 1st of Sept 2022 and 1st of Feb 2023.

Cases requiring oxygen supplementation are in yellow. Red square indicates increased cases with oxygen supplementation



## **Research question**

Retrospective analysis of the GIHSN database which uses advanced statistical methods to establish an <u>age-specific</u> **Severity Scale** for the **influenza-positive hospitalized patients** collected in the GIHSN project

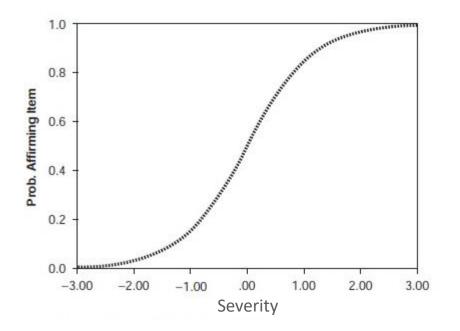
### **Countries**

| Income group                            | Country           | Number of seasons<br>(seasons*)              | WHO transmission zone     |
|-----------------------------------------|-------------------|----------------------------------------------|---------------------------|
| High income                             | Spain             | 11 (2012/13 - 2022/23)                       | South West Europe         |
|                                         | Canada            | 5 (2017/18 – 2021/22)                        | North America             |
|                                         | Russia            | 11 (2012/13 - 2022/23)                       | Eastern Europe            |
| Upper middle income                     | Türkiye           | 9 (2012/13 – 2016/17 &<br>2019/20 – 2022/23) | Western Asia              |
|                                         | Brazil            | 5 (2018/19 – 2022/23)                        | Tropical South<br>America |
|                                         | South Africa      | 5 (2016/17 – 2021/22)                        | Southern Africa           |
|                                         | India             | 8 (2015/16 – 2022/23)                        | Southern Asia             |
| Lower middle income                     | Kenya             | 6 (2017/18 – 2022/23)                        | Eastern Africa            |
|                                         | Côte d'Ivoire     | 6 (2017/18 – 2022/23)                        | Western Africa            |
| * For season 2022/23 data until week 3- | 2023 are included |                                              |                           |



## **Severity indicators**

- 16 indicators for severity included from GIHSN database
  - Measured at admission, during stay and at discharge
- High percentage of missing data
  - Varies between subgroups of cases
- Indicators measured during hospital stay were reported most frequently
- Change of methods → more general model using all cases in the dataset and all ages


| Severity indicator          | % complete<br>all cases | % complete<br>influenza positive |
|-----------------------------|-------------------------|----------------------------------|
| ICU admission               | 71%                     | 99%                              |
| Mechanical ventilation      | 62%                     | 88%                              |
| Length of stay              | 69%                     | 100%                             |
| Death while<br>hospitalized | 71%                     | 99%                              |

### **Chronic conditions**

| Condition              | % complete<br>all cases | % complete<br>influenza positive |
|------------------------|-------------------------|----------------------------------|
| Cardiovascular disease | 57%                     | 84%                              |
| diabetes               | 57%                     | 84%                              |
| COPD                   | 55%                     | 84%                              |

## **Model development**

- We used an Item Response Model
- 16 severity variables as items
- Probability model
- The model produces estimates for each item
- Rarer items are indicative of higher severity





## **Model application**

- The systematic effects from the items are combined into one latent Severity Score
- Higher score = more severe
- Not all items have to be reported

 $\rightarrow$  Less information will result in a score closer to the mean



### **Distribution of model scores**

| N-cases            | 104,372 |
|--------------------|---------|
| Mean               | -1.974  |
| Standard Deviation | 0.634   |
| Percentile 1%      | -2.827  |
| Percentile 5%      | -2.668  |
| Percentile 25%     | -2.275  |
| Percentile 50%     | -2.254  |
| Percentile 75%     | -1.602  |
| Percentile 95%     | -0.690  |
| Percentile 99%     | 0.313   |



## **Severity categories** + comparison of subgroups

| Low    | 50,420 (48.3%) |
|--------|----------------|
| Medium | 27,875 (26.7%) |
| High   | 26,077 (25.0%) |

| Flu positive |                |                |                       |  |
|--------------|----------------|----------------|-----------------------|--|
|              | Low            | Medium         | High                  |  |
| No           | 14,344 (38.9%) | 11,977 (32.5%) | 10,531 (28.6%)        |  |
| Yes          | 12,497 (58.8%) | 5,033 (23.7%)  | 3,732 ( <b>17.6%)</b> |  |

| Age group |                |                |                         |  |
|-----------|----------------|----------------|-------------------------|--|
|           | Low            | Medium         | High                    |  |
| 00-04     | 20,404 (52.4%) | 11,799 (30.3%) | 6,768 (17.4%)           |  |
| 05-17     | 4,462 (56.9%)  | 2,204 (28.1%)  | 1,173 (15.0%)           |  |
| 18-49     | 9,861 (52.5%)  | 5,319 (28.3%)  | 3,602 (19.2%)           |  |
| 50-64     | 3,981 (38.5%)  | 2,535 (24.5%)  | 3,832 ( <b>37.0%</b> )  |  |
| 65+       | 11,701 (41.2%) | 6,010 (21.2%)  | 10,677 ( <b>37.6%</b> ) |  |

NIVEL

122

## **Comparing subgroups**

| Low            | Medium                          | High                                                                          |                                                                                                                       |
|----------------|---------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 32,337 (54.3%) | 17,882 (30.0%)                  | 9,377 (15.7%)                                                                 |                                                                                                                       |
| 8,902 (44.3%)  | 5,169 (25.7%)                   | 6,023 (30.0%)                                                                 |                                                                                                                       |
| 9,181 (37.2%)  | 4,824 (19.5%)                   | 10,677 (43.3%)                                                                |                                                                                                                       |
|                | 32,337 (54.3%)<br>8,902 (44.3%) | 32,337 (54.3%)       17,882 (30.0%)         8,902 (44.3%)       5,169 (25.7%) | 32,337 (54.3%)       17,882 (30.0%)       9,377 (15.7%)         8,902 (44.3%)       5,169 (25.7%)       6,023 (30.0%) |

| Income level country |                |                |                |  |
|----------------------|----------------|----------------|----------------|--|
|                      | Low            | Medium         | High           |  |
| High income          | 17,990 (48.1%) | 8,365 (22.3%)  | 11,085 (29.6%) |  |
| Upper middle income  | 28,204 (54.6%) | 15,135 (29.3%) | 8,328 (16.1%)  |  |
| Lower middle income  | 4,226 (27.7%)  | 4,375 (28.7%)  | 6,664 (43.7%)  |  |



### Were we too ambitious?

- We still think it is a good idea
- It certainly requires more work
- It could be applied to other databases
- The project will be handed over to Prof Marta Nunes' group at the University of Lyon to take this forward



### **Expert group**

- Prof Marta Nunes, University of Lyon, France [Chair of GISHN]
- Prof Bruno Lina, University of Lyon, France [Virologist responsible for the sequencing of GISHN specimens]
- John McCauley, Worldwide Influenza Centre, The Francis Crick Institute, London, UK [Virologist]
- **Prof Melissa Andrew,** Dalhousie University and Canadian Center for Vaccinology, Halifax, Canada [clinician who has developed a Severity Score for Canada]
- Prof Henrique Pott, Dalhousie University and Canadian Center for Vaccinology, Halifax, Canada & Department of Medicine, Universidade Federal de São Carlos, São Carlos, Brazil [clinician who has developed a Severity Score for Canada]
- Prof Justin Ortiz, University of Maryland, USA [clinician, epidemiologist and expert]
- Prof Oana Sandalescu, National Institute for Infectious Diseases "Prof. Dr. Matei Bals", Bucharest, Romania [clinician, epidemiologist and contact person for validation exercise]
- Sandra Chaves, Foundation for Influenza Epidemiology, Fondation de France, Paris, France [Epidemiologist, expert and funder of SevScale]











## GIHSN 11TH ANNUAL MEETING, 16-17 NOVEMBER 2023

### COLLABORATION WITH WHO

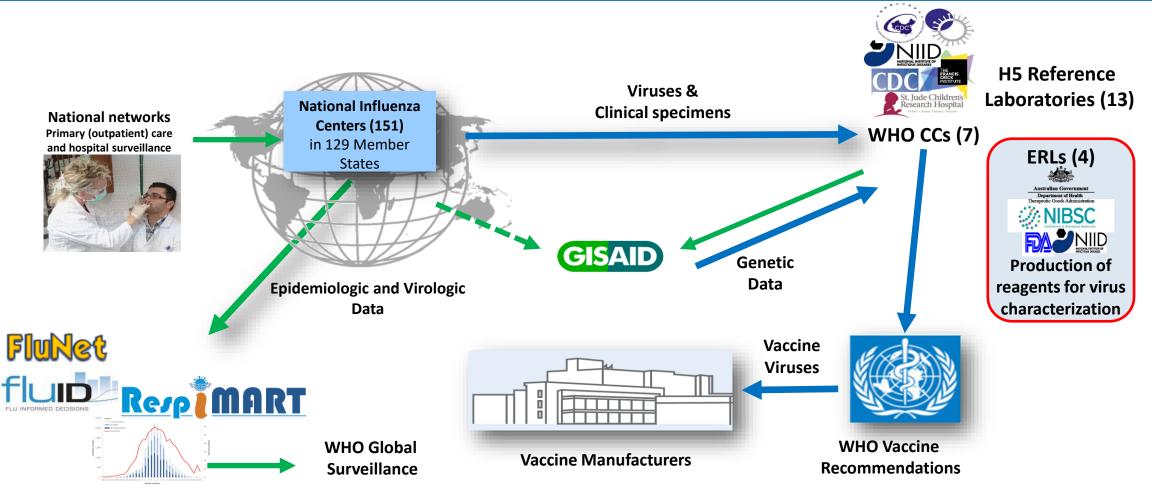
#### Moderators: Wenqing ZHANG, WHO & Cédric MAHE, FIE



Foundation for Influenza Epidemiology -Jean-Michel HERAUD, WHO -Magdi SAMAAN, WHO -Stefano TEMPIA, WHO



#### GIHSN 11TH ANNUAL MEETING, 16-17 NOVEMBER 2023

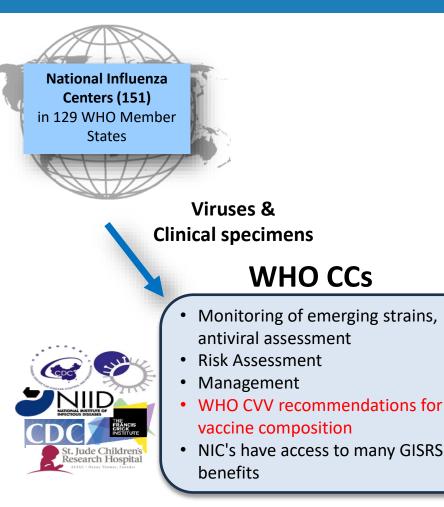

### VIRUS CO-CIRCULATION AND ALERT MECHANISMS

Jean Michel HERAUD, WHO, GIP



Foundation for Influenza Epidemiology

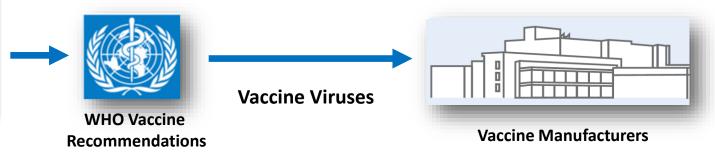
### Influenza surveillance within GISRS (and e-GISRS)




[Adapted from Belinda Herring and WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza at the US CDC, courtesy of Jacqueline Katz]





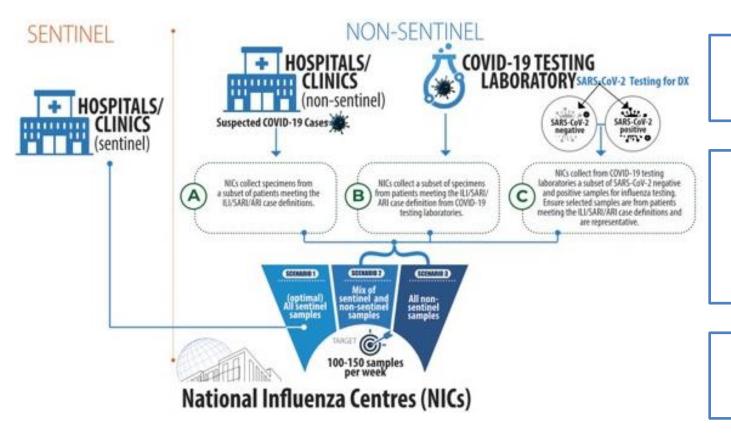

### **GISRS in Numbers**



Globally NICs processed between 16 to 19 million specimens per year for influenza from sentinel sites. (2015 to 2019)

An average of 400,000 to 800,000 specimens are reported as positive for influenza each year

In 2022, influenza labs shared approximately 40,000 influenza virus isolates and/or influenza virus-positive clinical specimens with WHO CCs.




[Adapted from Belinda Herring and WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza at the US CDC, courtesy of Jacqueline Katz]





### **GISRS and SARS-CoV-2 integration**



#### 178 MS implemented integrated surveillance

- 129 MS with NICs (as of November 2023)
- 49 MS with NICs-to-be

#### Challenges

- Adequacy, consistency and timeliness of reporting
- Human resources, sequencing and bioinformatics capacities
- Interpret data in the context of a multi-pathogens surveillance

#### Ways for improvement


- Linkages with non-sentinel and event-based surveillance,
- Strengthen collaborations with animal and private sector





# Integrated surveillance – GISRS in the context of the global surveillance landscape





#### **Expanding GISRS activities beyond influenza envisions**

- An end-to-end integration surveillance package (screening, testing, reporting, sequencing, sharing, risk assessment, response) for influenza and other priority respiratory viruses
- Multisource surveillance for an improved risk assessment and response

• Aligns with and is a critical player in collaborative surveillance and public health intelligence







- 1. Access and use of clinical data in the context of national/regional/global surveillance aligned with personal data protection regulations (ex GDPR in EU)
- 2. Leverage case-based surveillance (and event-based surveillance)
- 3. Interoperability of data collected between GISHN and RespiMART
- 4. Uses of GISHN network:
  - During a pandemic (early data on clinical severity, hospital fatality proportion)
  - Clinical interventions
  - Provide signal of risk factors for severe disease, antiviral resistance...







#### GIHSN 11TH ANNUAL MEETING, 16-17 NOVEMBER 2023

### **COMBINATION OF SEVERITY AND WGS FOR STRAIN SELECTION**

Dr Wenqing Zhang, Dr Magdi Samaan, WHO, GIP



Foundation for Influenza Epidemiology



## **GISRS and GIHSN Collaboration** - contribution to vaccine virus selection

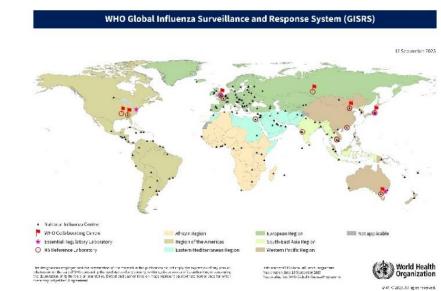
Dr Wenqing Zhang Dr Magdi Samaan Global Influenza Programme



**GIHSN Global Annual Meeting 2023** 16-17 November 2023, Salle V WHO

## Influenza vaccine strain selection

Twice each year WHO makes recommendations on influenza vaccines mid-February for the Northern Hemisphere mid-September for the Southern Hemisphere


### timely sharing of clinical samples, viruses, gene sequence data, epidemiological surveillance data year-round

- Surveillance data: virus surveillance complemented with epidemiologic and clinical findings
- Antigenic characterization of viruses
- Human serology studies with influenza virus vaccines
- Genetic characterisation of viruses
- Virus fitness forecasting
- Antiviral resistance

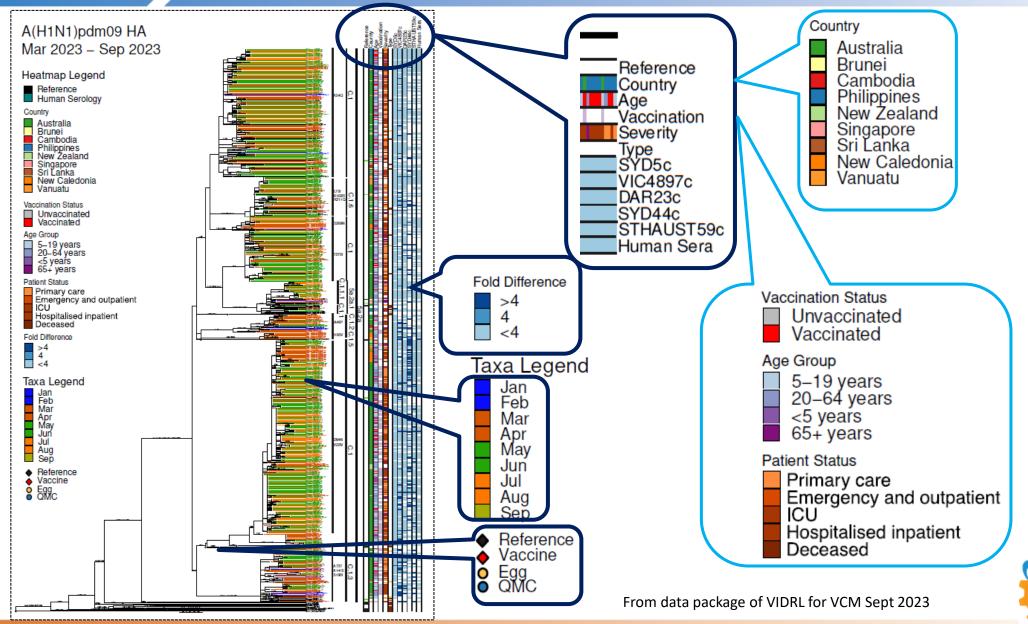
**World Health** 

rganization

- Vaccine effectiveness
- Availability of CVVs








GISRS

Ĥ.

GLOBAL INFLUENZA SURVEILLANCE &

RESPONSE SYSTEM



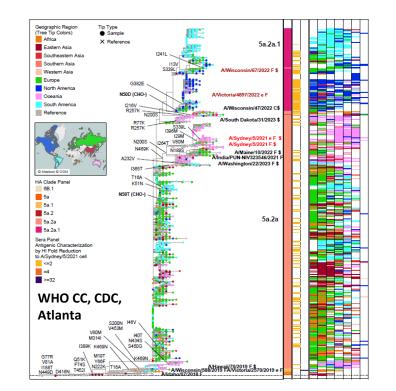
GIHSN Annual Meeting 16-17 December 2023

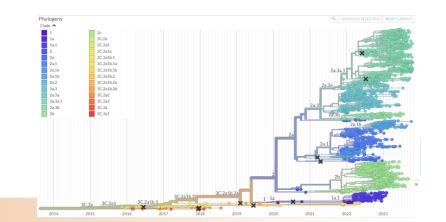
World Health Organization



## Scales of virus detections (as of 10 July)

of influenza B virus surveillance

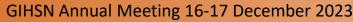

|      | Number of B virus detections |                     |                     |                                                |
|------|------------------------------|---------------------|---------------------|------------------------------------------------|
| Year | Total of B<br>detections     | B-Yam<br>detections | B-Vic<br>detections | of B viruses<br>with lineage<br>differentiated |
| 2020 | 168,301                      | 364                 | 25,531              | 15%                                            |
| 2021 | 33,994                       | 42                  | 29,058              | 86%                                            |
| 2022 | 62,735                       | 7                   | 34,616              | 55%                                            |
| 2023 | 107,600                      | 2                   | 15,336              | 14%                                            |






## WGS in influenza surveillance

- Explain & complement results of antigenic characterization
- Monitoring **antiviral resistance**
- Support risk assessment of zoonotic influenza viruses: mammalian adaptation, disease severity, virus origin, evolution (LPAI to HPAI; clade diversity etc.
- Seasonal influenza vaccine strain selection
- Markers for disease severity
- Prediction of virus evolution in terms of natural selection process
- Genomic surveillance tailored to public health objectives








## Discussions

- Alert of suspected clusters, especial with severe outcome or exposure to poultry/birds
- **Representative sampling** if not comprehensive sampling
- Contribution from GIHSN to VCM and beyond
  - Timely generating & reporting data & viruses
  - "Comprehensive" data attached to each virus specimen to WHO CCs
    - Clinical severity, vaccination history, antiviral use etc.
  - "Comprehensive" data for viruses outside of routine surveillance (clinical data including severity to GSD), and share with VCM committee
  - Lineage typing for all B virus detections
  - Sequential/serial sampling from patients suspected of antiviral resistance and sequence data
  - Human serum panels?
  - Sites for specific influenza surveillance and pandemic preparedness and response









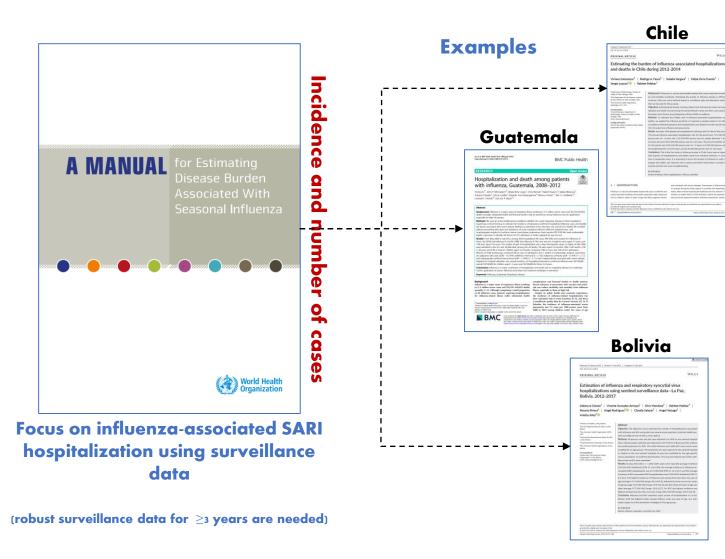
#### GIHSN 11TH ANNUAL MEETING, 16-17 NOVEMBER 2023

### **BURDEN OF DISEASE ESTIMATION**

Stefano Tempia, WHO, GIP



Foundation for Influenza Epidemiology


# WHO Burden of Disease Pillar under the Pandemic Influenza Preparedness (PIP) Framework

Stefano Tempia

WHO Global Influenza Programme



#### **BoD Manual**



### New Chapters (3):

- Extrapolating from base (e.g. sentinel sites/governorate) to national estimates
- Estimation of RSV and SARS-CoV-2 BoD
- Estimation of the BoD averted through immunization



From Country-Specific to regional/Global Estimates

#### Country-Specific Estimates

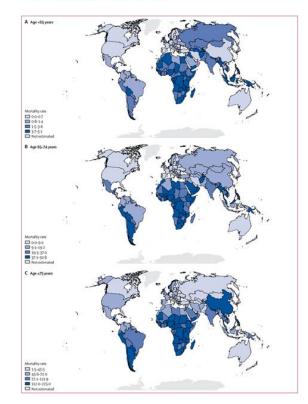


#### Regional/Global Estimates

Outputs (estimates of incidence and number of cases):

Global

•


- Regional
- <u>Country-Specific for countries</u>
   <u>that don't have local estimates</u>



#### Example of Global Influenza-Associated Mortality Estimation

Estimates of global seasonal influenza-associated respiratory @ to the mortality: a modelling study

A Davielle Julieno, Katheriee M Koppul, Howardt II Orang, Devid J Moscatello, Babber Pürkles, Steption Tempis, Cherg Cohen, pos MkJard Gru, Dens Scharzer, Bergunni J. Conels, pro My. Mar, Dryck, U. Wirk Ang, Washi Pukk, Markai Bellerger Fritz, Kongels, Trais, Laneit Sperhau, Anard Krithman, Gideen (Emskulz, Leixiette van Asten, Sanano Penria de Silve, Schernpe Aengleianna, Ude Inchhelz, Mar-Akim Widdawoon, Joseph Filterne, Gehr (Endski Sanani Alexiena sasciated Markair) Colliberator Hernesk<sup>1</sup>

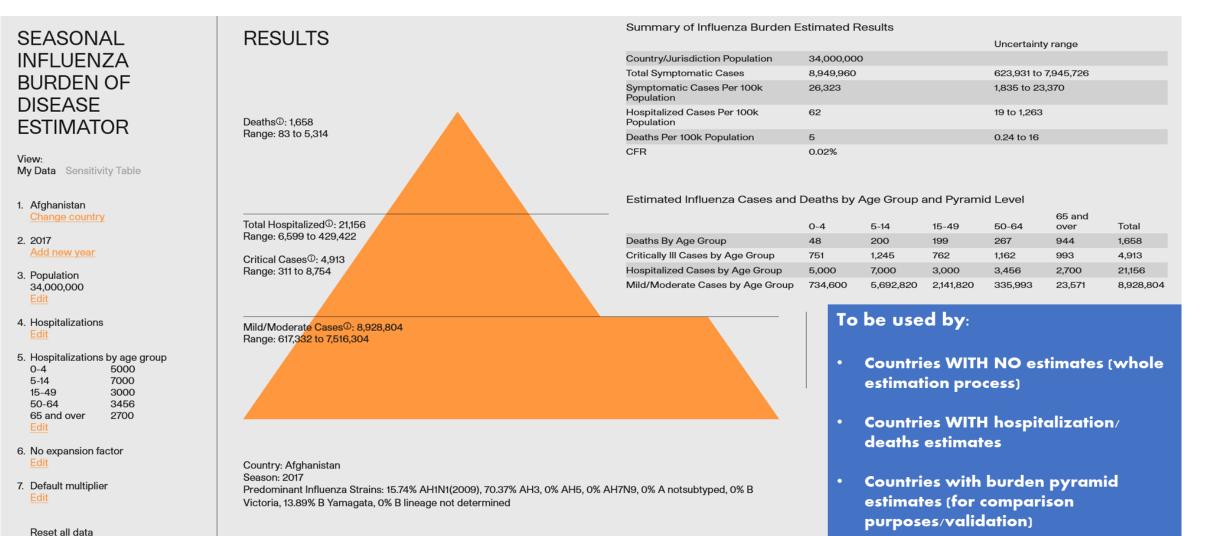


The Tool (<u>www.flutool.org</u>)

## SEASONAL INFLUENZA DISEASE BURDEN ESTIMATOR

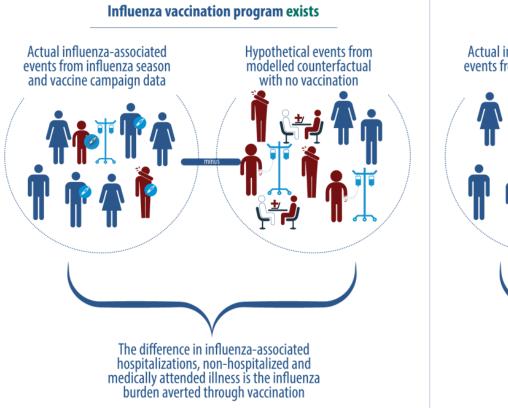
Your country Afghanistan + Choose your country from the drop-down menu above.

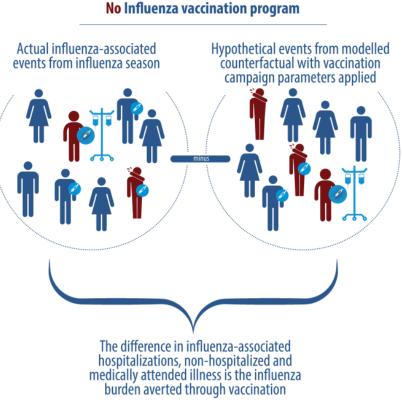




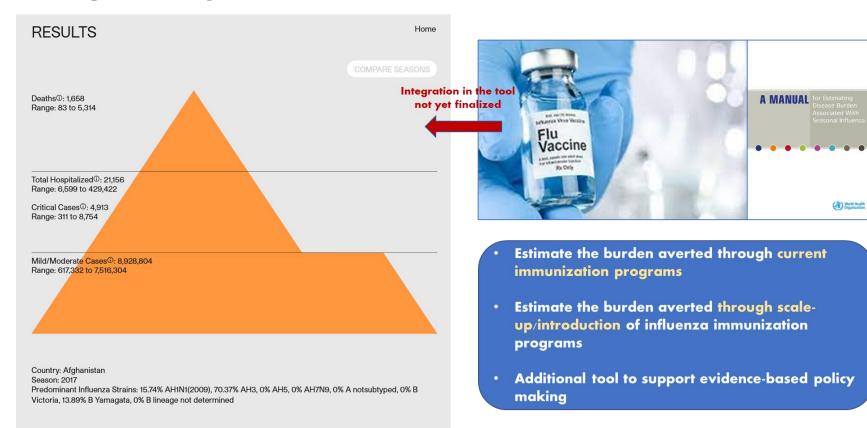

Center for Health Security




#### The Tool (output example)







#### Influenza Burden Averted though Vaccination: Current or Potential Immunization Programmes

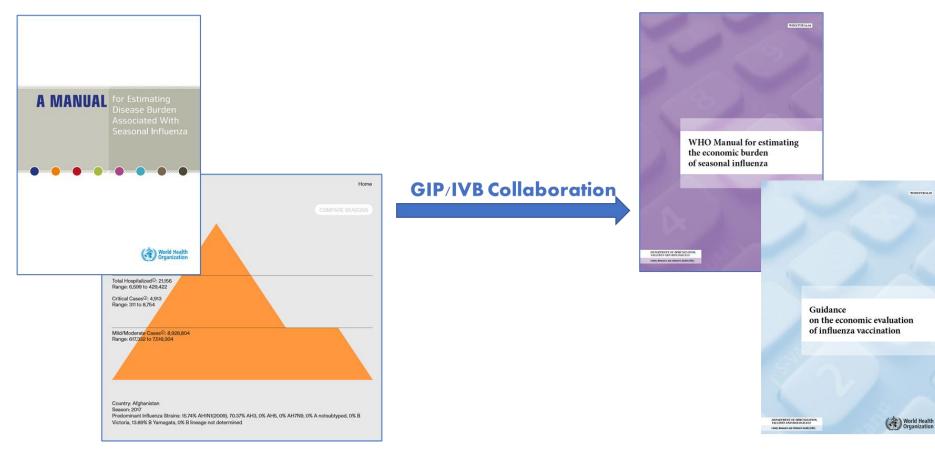






#### Influenza Burden Averted though Vaccination: Linkage with Pyramid Webtool






immunization

chapter

#### **Cost burden and Cost Effectiveness Analysis**

#### **Disease Burden**



#### **Economic Burden**



## **BoD Estimation**

**Next Steps** 



- Improve understanding of influenza- and RSV-severe disease burden
- Monitor the impact of influenza and RSV control measures (e.g., vaccination)
- Pilot disease/economic and impact tools
- Develop approaches for annual/intra-season influenza and RSV BoD estimates

## **BoD Estimation**

Possible areas of collaboration



- Pilot novel approaches for catchment areas estimation (e.g., probabilistic method(s))
- Improve understanding of (influenza- and) RSV-severe disease burden (with emphasis on RSV BoD baselines before possible vaccine introduction)
- Pilot systems to monitor the impact of influenza and RSV control measures (e.g., vaccination) – Network/Multi-center Approach
- Pilot approaches for annual/intra-season influenza and RSV BoD estimates











#### Global Influenza Hospital Surveillance Network

# **THANK YOU!**

Copyright GIHSN 2023 | 154